Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome.

Nature genetics

Tissue Distribution, Time Factors, Syndrome, Sequence Homology, Amino Acid, Sequence Analysis, DNA, Reverse Transcriptase Polymerase Chain Reaction, genetics, Osteosclerosis, Mutation, Missense, Mutation, Molecular Sequence Data, physiology, Molecular Chaperones, Microscopy, Fluorescence, Microscopy, Electron, Intellectual Disability, Hypoparathyroidism, Humans, Homozygote, Haplotypes, metabolism, Golgi Apparatus, Genes, Recessive, Gene Deletion, Fibroblasts, abnormalities, Face, DNA Mutational Analysis, Chromosomes, Human, Pair 1, Cells, Cultured, Amino Acid Sequence

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The syndrome of congenital hypoparathyroidism, mental retardation, facial dysmorphism and extreme growth failure (HRD or Sanjad-Sakati syndrome; OMIM 241410) is an autosomal recessive disorder reported almost exclusively in Middle Eastern populations. A similar syndrome with the additional features of osteosclerosis and recurrent bacterial infections has been classified as autosomal recessive Kenny-Caffey syndrome (AR-KCS; OMIM 244460). Both traits have previously been mapped to chromosome 1q43-44 (refs 5,6) and, despite the observed clinical variability, share an ancestral haplotype, suggesting a common founder mutation. We describe refinement of the critical region to an interval of roughly 230 kb and identification of deletion and truncation mutations of TBCE in affected individuals. The gene TBCE encodes one of several chaperone proteins required for the proper folding of alpha-tubulin subunits and the formation of alpha-beta-tubulin heterodimers. Analysis of diseased fibroblasts and lymphoblastoid cells showed lower microtubule density at the microtubule-organizing center (MTOC) and perturbed microtubule polarity in diseased cells. Immunofluorescence and ultrastructural studies showed disturbances in subcellular organelles that require microtubules for membrane trafficking, such as the Golgi and late endosomal compartments. These findings demonstrate that HRD and AR-KCS are chaperone diseases caused by a genetic defect in the tubulin assembly pathway, and establish a potential connection between tubulin physiology and the development of the parathyroid.

      Related collections

      Most cited references 25

      • Record: found
      • Abstract: not found
      • Article: not found

      Tandem repeats finder: a program to analyze DNA sequences.

      A tandem repeat in DNA is two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats have been shown to cause human disease, may play a variety of regulatory and evolutionary roles and are important laboratory and analytic tools. Extensive knowledge about pattern size, copy number, mutational history, etc. for tandem repeats has been limited by the inability to easily detect them in genomic sequence data. In this paper, we present a new algorithm for finding tandem repeats which works without the need to specify either the pattern or pattern size. We model tandem repeats by percent identity and frequency of indels between adjacent pattern copies and use statistically based recognition criteria. We demonstrate the algorithm's speed and its ability to detect tandem repeats that have undergone extensive mutational change by analyzing four sequences: the human frataxin gene, the human beta T cellreceptor locus sequence and two yeast chromosomes. These sequences range in size from 3 kb up to 700 kb. A World Wide Web server interface atc3.biomath.mssm.edu/trf.html has been established for automated use of the program.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Prediction of complete gene structures in human genomic DNA.

         C Burge,  S Karlin (1997)
        We introduce a general probabilistic model of the gene structure of human genomic sequences which incorporates descriptions of the basic transcriptional, translational and splicing signals, as well as length distributions and compositional features of exons, introns and intergenic regions. Distinct sets of model parameters are derived to account for the many substantial differences in gene density and structure observed in distinct C + G compositional regions of the human genome. In addition, new models of the donor and acceptor splice signals are described which capture potentially important dependencies between signal positions. The model is applied to the problem of gene identification in a computer program, GENSCAN, which identifies complete exon/intron structures of genes in genomic DNA. Novel features of the program include the capacity to predict multiple genes in a sequence, to deal with partial as well as complete genes, and to predict consistent sets of genes occurring on either or both DNA strands. GENSCAN is shown to have substantially higher accuracy than existing methods when tested on standardized sets of human and vertebrate genes, with 75 to 80% of exons identified exactly. The program is also capable of indicating fairly accurately the reliability of each predicted exon. Consistently high levels of accuracy are observed for sequences of differing C + G content and for distinct groups of vertebrates.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17.

          Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), historically termed Pick's disease. Most FTDP-17 cases show neuronal and/or glial inclusions that stain positively with antibodies raised against the microtubule-associated protein Tau, although the Tau pathology varies considerably in both its quantity (or severity) and characteristics. Previous studies have mapped the FTDP-17 locus to a 2-centimorgan region on chromosome 17q21.11; the tau gene also lies within this region. We have now sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5' splice site of exon 10. The splice-site mutations all destabilize a potential stem-loop structure which is probably involved in regulating the alternative splicing of exon10. This causes more frequent usage of the 5' splice site and an increased proportion of tau transcripts that include exon 10. The increase in exon 10+ messenger RNA will increase the proportion of Tau containing four microtubule-binding repeats, which is consistent with the neuropathology described in several families with FTDP-17.
            Bookmark

            Author and article information

            Journal
            12389028
            10.1038/ng1012

            Comments

            Comment on this article