20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Left ventricular long axis strain: a new prognosticator in non-ischemic dilated cardiomyopathy?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Long axis strain (LAS) has been shown to be a fast assessable parameter representing global left ventricular (LV) longitudinal function in cardiovascular magnetic resonance (CMR). However, the prognostic value of LAS in cardiomyopathies with reduced left ventricular ejection fraction (LVEF) has not been evaluated yet.

          Methods and results

          In 146 subjects with non-ischemic dilated cardiomyopathy (NIDCM, LVEF ≤45 %) LAS was assessed retrospectively from standard non-contrast SSFP cine sequences by measuring the distance between the epicardial border of the left ventricular apex and the midpoint of a line connecting the origins of the mitral valve leaflets in end-systole and end-diastole. The final values were calculated according to the strain formula.

          The primary endpoint of the study was defined as a combination of cardiac death, heart transplantation or aborted sudden cardiac death and occurred in 24 subjects during follow-up. Patients with LAS values > −5 % showed a significant higher rate of cardiac events independent of the presence of late gadolinium enhancement (LGE). The multivariate Cox regression analysis revealed that LVEDV/BSA (HR: 1.01, p < 0.05), presence of LGE (HR: 2.51, p < 0.05) and LAS (HR: 1.28, p < 0.05) were independent predictors for cardiac events. In a sequential cox regression analysis LAS offered significant incremental information ( p < 0.05) for the prediction of outcome in addition to LGE and LVEDV/BSA. Using a dichotomous three point scoring model for risk stratification, including LVEF <35 %, LAS > −10 % and the presence of LGE, patients with 3 points had a significantly higher risk for cardiac events than those with 2 or less points.

          Conclusion

          Assessment of long axis function with LAS offers significant incremental information for the prediction of cardiac events in NIDCM and improves risk stratification beyond established CMR parameters.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy.

          Risk stratification of patients with nonischemic dilated cardiomyopathy is primarily based on left ventricular ejection fraction (LVEF). Superior prognostic factors may improve patient selection for implantable cardioverter-defibrillators (ICDs) and other management decisions. To determine whether myocardial fibrosis (detected by late gadolinium enhancement cardiovascular magnetic resonance [LGE-CMR] imaging) is an independent and incremental predictor of mortality and sudden cardiac death (SCD) in dilated cardiomyopathy. Prospective, longitudinal study of 472 patients with dilated cardiomyopathy referred to a UK center for CMR imaging between November 2000 and December 2008 after presence and extent of midwall replacement fibrosis were determined. Patients were followed up through December 2011. Primary end point was all-cause mortality. Secondary end points included cardiovascular mortality or cardiac transplantation; an arrhythmic composite of SCD or aborted SCD (appropriate ICD shock, nonfatal ventricular fibrillation, or sustained ventricular tachycardia); and a composite of HF death, HF hospitalization, or cardiac transplantation. Among the 142 patients with midwall fibrosis, there were 38 deaths (26.8%) vs 35 deaths (10.6%) among the 330 patients without fibrosis (hazard ratio [HR], 2.96 [95% CI, 1.87-4.69]; absolute risk difference, 16.2% [95% CI, 8.2%-24.2%]; P < .001) during a median follow-up of 5.3 years (2557 patient-years of follow-up). The arrhythmic composite was reached by 42 patients with fibrosis (29.6%) and 23 patients without fibrosis (7.0%) (HR, 5.24 [95% CI, 3.15-8.72]; absolute risk difference, 22.6% [95% CI, 14.6%-30.6%]; P < .001). After adjustment for LVEF and other conventional prognostic factors, both the presence of fibrosis (HR, 2.43 [95% CI, 1.50-3.92]; P < .001) and the extent (HR, 1.11 [95% CI, 1.06-1.16]; P < .001) were independently and incrementally associated with all-cause mortality. Fibrosis was also independently associated with cardiovascular mortality or cardiac transplantation (by fibrosis presence: HR, 3.22 [95% CI, 1.95-5.31], P < .001; and by fibrosis extent: HR, 1.15 [95% CI, 1.10-1.20], P < .001), SCD or aborted SCD (by fibrosis presence: HR, 4.61 [95% CI, 2.75-7.74], P < .001; and by fibrosis extent: HR, 1.10 [95% CI, 1.05-1.16], P < .001), and the HF composite (by fibrosis presence: HR, 1.62 [95% CI, 1.00-2.61], P = .049; and by fibrosis extent: HR, 1.08 [95% CI, 1.04-1.13], P < .001). Addition of fibrosis to LVEF significantly improved risk reclassification for all-cause mortality and the SCD composite (net reclassification improvement: 0.26 [95% CI, 0.11-0.41]; P = .001 and 0.29 [95% CI, 0.11-0.48]; P = .002, respectively). Assessment of midwall fibrosis with LGE-CMR imaging provided independent prognostic information beyond LVEF in patients with nonischemic dilated cardiomyopathy. The role of LGE-CMR in the risk stratification of dilated cardiomyopathy requires further investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy.

            We studied the prognostic implications of midwall fibrosis in dilated cardiomyopathy (DCM) in a prospective longitudinal study. Risk stratification of patients with nonischemic DCM in the era of device implantation is problematic. Approximately 30% of patients with DCM have midwall fibrosis as detected by late gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR), which may increase susceptibility to arrhythmia and progression of heart failure. Consecutive DCM patients (n = 101) with the presence or absence of midwall fibrosis were followed up prospectively for 658 +/- 355 days for events. Midwall fibrosis was present in 35% of patients and was associated with a higher rate of the predefined primary combined end point of all-cause death and hospitalization for a cardiovascular event (hazard ratio 3.4, p = 0.01). Multivariate analysis showed midwall fibrosis as the sole significant predictor of death or hospitalization. However, there was no significant difference in all-cause mortality between the 2 groups. Midwall fibrosis also predicted secondary outcome measures of sudden cardiac death (SCD) or ventricular tachycardia (VT) (hazard ratio 5.2, p = 0.03). Midwall fibrosis remained predictive of SCD/VT after correction for baseline differences in left ventricular ejection fraction between the 2 groups. In DCM, midwall fibrosis determined by CMR is a predictor of the combined end point of all-cause mortality and cardiovascular hospitalization, which is independent of ventricular remodeling. In addition, midwall fibrosis by CMR predicts SCD/VT. This suggests a potential role for CMR in the risk stratification of patients with DCM, which may have value in determining the need for device therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable?

              To prospectively compare the agreement of left ventricular volumes and ejection fraction by M-mode echocardiography (echo), 2D echo, radionuclide ventriculography and cardiovascular magnetic resonance performed in patients with chronic stable heart failure. It is important to know whether the results of each technique are interchangable, and thereby how the results of large studies in heart failure utilizing one technique can be applied using another. Some studies have compared cardiovascular magnetic resonance with echo or radionuclude ventriculography but few contain patients with heart failure and none have compared these techniques with the current fast breath-hold acquisition cardiovascular magnetic resonance. Fifty two patients with chronic stable heart failure taking part in the CHRISTMAS Study, underwent M-mode echo, 2D echo, radionuclude ventriculography and cardiovascular magnetic resonance within 4 weeks. The scans were analysed independently in blinded fashion by a single investigator at three core laboratories. Of the echocardiograms, 86% had sufficient image quality to obtain left ventricular ejection fraction by M-mode method, but only 69% by 2D Simpson's biplane analysis. All 52 patients tolerated the radionuclude ventriculography and cardiovascular magnetic resonance, and all these scans were analysable. The mean left ventricular ejection fraction by M-mode cube method was 39+/-16% and 29+/-15% by Teichholz M-mode method. The mean left ventricular ejection fraction by 2D echo Simpson's biplane was 31+/-10%, by radionuclude ventriculography was 24+/-9% and by cardiovascular magnetic resonance was 30+/-11. All the mean left ventricular ejection fractions by each technique were significantly different from all other techniques (P<0.001), except for cardiovascular magnetic resonance ejection fraction and 2D echo ejection fraction by Simpson's rule (P=0.23). The Bland-Altman limits of agreement encompassing four standard deviations was widest for both cardiovascular magnetic resonance vs cube M-mode echo and cardiovascular magnetic resonance vs Teichholz M-mode echo at 66% each, and was 58% for radionuclude ventriculography vs cube M-mode echo, 44% for cardiovascular magnetic resonance vs Simpson's 2D echo, 39% for radionuclide ventriculography vs Simpson's 2D echo, and smallest at 31% for cardiovascular magnetic resonance-radionuclide ventriculography. Similarly, the end-diastolic volume and end-systolic volume by 2D echo and cardiovascular magnetic resonance revealed wide limits of agreement (52 ml to 216 ml and 11 ml to 188 ml, respectively). These results suggest that ejection fraction measurements by various techniques are not interchangeable. The conclusions and recommendations of research studies in heart failure should therefore be interpreted in the context of locally available techniques. In addition, there are very wide variances in volumes and ejection fraction between techniques, which are most marked in comparisons using echocardiography. This suggests that cardiovascular magnetic resonance is the preferred technique for volume and ejection fraction estimation in heart failure patients, because of its 3D approach for non-symmetric ventricles and superior image quality. Copyright 2000 The European Society of Cardiology.
                Bookmark

                Author and article information

                Contributors
                +49-6221/56-8611 , +49-6221/56-5515 , sebastian.buss@med.uni-heidelberg.de
                Journal
                J Cardiovasc Magn Reson
                J Cardiovasc Magn Reson
                Journal of Cardiovascular Magnetic Resonance
                BioMed Central (London )
                1097-6647
                1532-429X
                7 June 2016
                7 June 2016
                2016
                : 18
                : 36
                Affiliations
                [ ]Department of Cardiology, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
                [ ]DZHK (German Centre for Cardiovascular Research), partner site, Heidelberg, Germany
                [ ]Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
                Article
                255
                10.1186/s12968-016-0255-0
                4897821
                27268238
                cb705008-3875-456f-be12-b73ff95a45d3
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 10 February 2016
                : 27 May 2016
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Cardiovascular Medicine
                dilated cardiomyopathy,cardiovascular magnetic resonance,prognosis,left ventricular function,long axis strain

                Comments

                Comment on this article