19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methyl ammonium lead triiodide perovskite wafers for application in direct conversion X-ray detectors are fabricated by a room-temperature sintering process. A conversion efficiency of 2,527 mC Gyaircm–2 under 70 kVp X-ray exposure is obtained.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments

          The indentation load-displacement behavior of six materials tested with a Berkovich indenter has been carefully documented to establish an improved method for determining hardness and elastic modulus from indentation load-displacement data. The materials included fused silica, soda–lime glass, and single crystals of aluminum, tungsten, quartz, and sapphire. It is shown that the load–displacement curves during unloading in these materials are not linear, even in the initial stages, thereby suggesting that the flat punch approximation used so often in the analysis of unloading data is not entirely adequate. An analysis technique is presented that accounts for the curvature in the unloading data and provides a physically justifiable procedure for determining the depth which should be used in conjunction with the indenter shape function to establish the contact area at peak load. The hardnesses and elastic moduli of the six materials are computed using the analysis procedure and compared with values determined by independent means to assess the accuracy of the method. The results show that with good technique, moduli can be measured to within 5%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design.

            Although known since the late 19th century, organic-inorganic perovskites have recently received extraordinary research community attention because of their unique physical properties, which make them promising candidates for application in photovoltaic (PV) and related optoelectronic devices. This review will explore beyond the current focus on three-dimensional (3-D) lead(II) halide perovskites, to highlight the great chemical flexibility and outstanding potential of the broader class of 3-D and lower dimensional organic-based perovskite family for electronic, optical, and energy-based applications as well as fundamental research. The concept of a multifunctional organic-inorganic hybrid, in which the organic and inorganic structural components provide intentional, unique, and hopefully synergistic features to the compound, represents an important contemporary target.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Indentation size effects in crystalline materials: A law for strain gradient plasticity

                Bookmark

                Author and article information

                Journal
                Nature Photonics
                Nature Photon
                Springer Nature
                1749-4885
                1749-4893
                June 19 2017
                June 19 2017
                :
                :
                Article
                10.1038/nphoton.2017.94
                cb735099-f248-4c39-8834-31f1d5a7c3e5
                © 2017
                History

                Comments

                Comment on this article