+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      A model of tripeptidyl-peptidase I (CLN2), a ubiquitous and highly conserved member of the sedolisin family of serine-carboxyl peptidases


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Tripeptidyl-peptidase I, also known as CLN2, is a member of the family of sedolisins (serine-carboxyl peptidases). In humans, defects in expression of this enzyme lead to a fatal neurodegenerative disease, classical late-infantile neuronal ceroid lipofuscinosis. Similar enzymes have been found in the genomic sequences of several species, but neither systematic analyses of their distribution nor modeling of their structures have been previously attempted.


          We have analyzed the presence of orthologs of human CLN2 in the genomic sequences of a number of eukaryotic species. Enzymes with sequences sharing over 80% identity have been found in the genomes of macaque, mouse, rat, dog, and cow. Closely related, although clearly distinct, enzymes are present in fish (fugu and zebra), as well as in frogs (Xenopus tropicalis). A three-dimensional model of human CLN2 was built based mainly on the homology with Pseudomonas sp. 101 sedolisin.


          CLN2 is very highly conserved and widely distributed among higher organisms and may play an important role in their life cycles. The model presented here indicates a very open and accessible active site that is almost completely conserved among all known CLN2 enzymes. This result is somehow surprising for a tripeptidase where the presence of a more constrained binding pocket was anticipated. This structural model should be useful in the search for the physiological substrates of these enzymes and in the design of more specific inhibitors of CLN2.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs.

          A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.
            • Record: found
            • Abstract: found
            • Article: not found

            Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods.

            The sequences of related proteins can diverge beyond the point where their relationship can be recognised by pairwise sequence comparisons. In attempts to overcome this limitation, methods have been developed that use as a query, not a single sequence, but sets of related sequences or a representation of the characteristics shared by related sequences. Here we describe an assessment of three of these methods: the SAM-T98 implementation of a hidden Markov model procedure; PSI-BLAST; and the intermediate sequence search (ISS) procedure. We determined the extent to which these procedures can detect evolutionary relationships between the members of the sequence database PDBD40-J. This database, derived from the structural classification of proteins (SCOP), contains the sequences of proteins of known structure whose sequence identities with each other are 40% or less. The evolutionary relationships that exist between those that have low sequence identities were found by the examination of their structural details and, in many cases, their functional features. For nine false positive predictions out of a possible 432,680, i.e. at a false positive rate of about 1/50,000, SAM-T98 found 35% of the true homologous relationships in PDBD40-J, whilst PSI-BLAST found 30% and ISS found 25%. Overall, this is about twice the number of PDBD40-J relations that can be detected by the pairwise comparison procedures FASTA (17%) and GAP-BLAST (15%). For distantly related sequences in PDBD40-J, those pairs whose sequence identity is less than 30%, SAM-T98 and PSI-BLAST detect three times the number of relationships found by the pairwise methods. Copyright 1998 Academic Press.
              • Record: found
              • Abstract: found
              • Article: not found

              Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis.

              Classical late-infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal neurodegenerative disease whose defective gene has remained elusive. A molecular basis for LINCL was determined with an approach applicable to other lysosomal storage diseases. When the mannose 6-phosphate modification of newly synthesized lysosomal enzymes was used as an affinity marker, a single protein was identified that is absent in LINCL. Sequence comparisons suggest that this protein is a pepstatin-insensitive lysosomal peptidase, and a corresponding enzymatic activity was deficient in LINCL autopsy specimens. Mutations in the gene encoding this protein were identified in LINCL patients but not in normal controls.

                Author and article information

                BMC Struct Biol
                BMC Structural Biology
                BioMed Central (London )
                11 November 2003
                : 3
                : 8
                [1 ]Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
                [2 ]Laboratory of Experimental and Computational Biology, National Cancer Institute, Bethesda, MD 20892, USA
                [3 ]Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
                [4 ]Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
                [5 ]Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
                Copyright © 2003 Wlodawer et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                : 23 July 2003
                : 11 November 2003
                Research Article

                Molecular biology
                Molecular biology


                Comment on this article