6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Severe acute respiratory syndrome coronavirus accessory protein 9b is a virion-associated protein

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eight accessory proteins have been identified in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). They are believed to play roles in the viral life cycle and may contribute to the pathogenesis and virulence. ORF9b as one of these accessory proteins is located in subgenomic mRNA9 and encodes a 98 amino acid protein. However, whether 9b protein is a structural component of SARS-CoV particles remains unknown. In this study, we demonstrate that 9b protein is translated from bicistronic mRNA9 via leaky ribosome scanning and it is incorporated into both virus-like particles (VLPs) and purified SARS-CoV virions. Further analysis shows that sufficient incorporation of 9b protein into VLPs is dependent upon the co-expression of E and M proteins, but not upon the presence of either S or N protein. Our data indicate that 9b protein of SARS-CoV is another virion-associated accessory protein. This finding will lead to a better understanding of the properties of the SARS-CoV 9b protein.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome

          The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. The novel coronavirus might have a role in causing SARS. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel coronavirus associated with severe acute respiratory syndrome.

            A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

              P Rota (2003)
              In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virology
                Virology
                Virology
                Academic Press
                0042-6822
                1096-0341
                25 April 2009
                5 June 2009
                25 April 2009
                : 388
                : 2
                : 279-285
                Affiliations
                [a ]Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai Institutes of Biological Sciences, 225 South Chongqing Road, Shanghai 200025, China
                [b ]Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
                [c ]Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
                [d ]Research Center for Proteome Analysis Key Lab of Proteomics, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
                [e ]Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
                [f ]E-Institutes of Shanghai University Immunology Division, Shanghai, China
                Author notes
                [* ]Corresponding authors. J.-R. Wu is to be contacted at fax: +86 21 54921011. B. Sun, Laboratory of Molecular Virology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai Institutes of Biological Sciences, 225 South Chongqing Road, Shanghai 200025, China. Fax: +86 21 63843571. wujr@ 123456sibs.ac.cn bsun@ 123456sibs.ac.cn
                [1]

                These authors contributed equally to this work.

                Article
                S0042-6822(09)00225-6
                10.1016/j.virol.2009.03.032
                7103405
                19394665
                cb90c631-8c7c-4055-baa5-e339f77e563e
                Copyright © 2009 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 21 January 2009
                : 10 February 2009
                : 26 March 2009
                Categories
                Article

                Microbiology & Virology
                sars-cov,orf9b,virion-associated protein
                Microbiology & Virology
                sars-cov, orf9b, virion-associated protein

                Comments

                Comment on this article