22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Satellite-Based Estimates of Long-Term Exposure to Fine Particles and Association with Mortality in Elderly Hong Kong Residents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A limited number of studies on long-term effects of particulate matter with aerodynamic diameter < 2.5 μm (PM 2.5) on health suggest it can be an important cause of morbidity and mortality. In Asia where air quality is poor and deteriorating, local data on long-term effects of PM 2.5 to support policy on air quality management are scarce.

          Objectives

          We assessed long-term effects of PM 2.5 on the mortality in a single Asian city.

          Methods

          For 10–13 years, we followed up a cohort of 66,820 participants ≥ 65 years of age who were enrolled and interviewed in all 18 Elderly Health Centres of the Department of Health, Hong Kong, in 1998–2001. Their residential addresses were geocoded into x- and y-coordinates, and their proxy exposures to PM 2.5 at their addresses in 1 × 1 km grids were estimated from the U.S. National Aeronautics and Space Administration (NASA) satellite data. We used Cox regression models to calculate hazard ratios (HRs) of mortality associated with PM 2.5.

          Results

          Mortality HRs per 10-μg/m 3 increase in PM 2.5 were 1.14 (95% CI: 1.07, 1.22) for all natural causes, 1.22 (95% CI: 1.08, 1.39) for cardiovascular causes, 1.42 (95% CI: 1.16, 1.73) for ischemic heart disease, 1.24 (95% CI: 1.00, 1.53) for cerebrovascular disease, and 1.05 (95% CI: 0.90, 1.22) for respiratory causes.

          Conclusions

          Our methods in using NASA satellite data provide a readily accessible and affordable approach to estimation of a sufficient range of individual PM 2.5 exposures in a single city. This approach can expand the capacity to conduct environmental accountability studies in areas with few measurements of fine particles.

          Citation

          Wong CM, Lai HK, Tsang H, Thach TQ, Thomas GN, Lam KB, Chan KP, Yang L, Lau AK, Ayres JG, Lee SY, Chan WM, Hedley AJ, Lam TH. 2015. Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents. Environ Health Perspect 123:1167–1172;  http://dx.doi.org/10.1289/ehp.1408264

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found

          Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project

          Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. We used data from 22 European cohort studies, which created a total study population of 367,251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. The total study population consisted of 367,251 participants who contributed 5,118,039 person-years at risk (average follow-up 13.9 years), of whom 29,076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 μg/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I(2) p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 μg/m(3) (1.07, 1.01-1.13). Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value. European Community's Seventh Framework Program (FP7/2007-2011). Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clearing the air: a review of the effects of particulate matter air pollution on human health.

            The World Health Organization estimates that particulate matter (PM) air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality worldwide. However, many studies show that the relationship is deeper and far more complicated than originally thought. PM is a portion of air pollution that is made up of extremely small particles and liquid droplets containing acids, organic chemicals, metals, and soil or dust particles. PM is categorized by size and continues to be the fraction of air pollution that is most reliably associated with human disease. PM is thought to contribute to cardiovascular and cerebrovascular disease by the mechanisms of systemic inflammation, direct and indirect coagulation activation, and direct translocation into systemic circulation. The data demonstrating PM's effect on the cardiovascular system are strong. Populations subjected to long-term exposure to PM have a significantly higher cardiovascular incident and mortality rate. Short-term acute exposures subtly increase the rate of cardiovascular events within days of a pollution spike. The data are not as strong for PM's effects on cerebrovascular disease, though some data and similar mechanisms suggest a lesser result with smaller amplitude. Respiratory diseases are also exacerbated by exposure to PM. PM causes respiratory morbidity and mortality by creating oxidative stress and inflammation that leads to pulmonary anatomic and physiologic remodeling. The literature shows PM causes worsening respiratory symptoms, more frequent medication use, decreased lung function, recurrent health care utilization, and increased mortality. PM exposure has been shown to have a small but significant adverse effect on cardiovascular, respiratory, and to a lesser extent, cerebrovascular disease. These consistent results are shown by multiple studies with varying populations, protocols, and regions. The data demonstrate a dose-dependent relationship between PM and human disease, and that removal from a PM-rich environment decreases the prevalence of these diseases. While further study is needed to elucidate the effects of composition, chemistry, and the PM effect on susceptible populations, the preponderance of data shows that PM exposure causes a small but significant increase in human morbidity and mortality. Most sources agree on certain "common sense" recommendations, although there are lonely limited data to support them. Indoor PM exposure can be reduced by the usage of air conditioning and particulate filters, decreasing indoor combustion for heating and cooking, and smoking cessation. Susceptible populations, such as the elderly or asthmatics, may benefit from limiting their outdoor activity during peak traffic periods or poor air quality days. These simple changes may benefit individual patients in both short-term symptomatic control and long-term cardiovascular and respiratory complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              International statistical classification of diseases and related health problems. Tenth revision.

              G Brämer (1988)
              The International Classification of Diseases has, under various names, been for many decades the essential tool for national and international comparability in public health. This statistical tool has been customarily revised every 10 years in order to keep up with the advances of medicine. At first intended primarily for the classification of causes of death, its scope has been progressively widening to include coding and tabulation of causes of morbidity as well as medical record indexing and retrieval. The ability to exchange comparable data from region to region and from country to country, to allow comparison from one population to another and to permit study of diseases over long periods, is one of the strengths of the International Statistical Classification of Diseases, Injuries, and Causes of Death (ICD). WHO has been responsible for the organization, coordination and execution of activities related to ICD since 1948 (Sixth Revision of the ICD) and is now proceeding with the Tenth Revision. For the first time in its history the ICD will be based on an alphanumeric coding scheme and will have to function as a core classification from which a series of modules can be derived, each reaching a different degree of specificity and adapted to a particular specialty or type of user. It is proposed that the chapters on external causes of injury and poisoning, and factors influencing health status and contact with health services, which were supplementary classifications in ICD-9, should form an integral part of ICD-10. The title of ICD has been amended to "International Statistical Classification of Diseases and Related Health Problems"', but the abbreviation "ICD" will be retained.(ABSTRACT TRUNCATED AT 250 WORDS)
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                24 April 2015
                November 2015
                : 123
                : 11
                : 1167-1172
                Affiliations
                [1 ]School of Public Health, The University of Hong Kong, Hong Kong, China
                [2 ]School of Health and Population Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
                [3 ]Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
                [4 ]School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
                [5 ]Division of Environment, The Hong Kong University of Science and Technology, Hong Kong, China
                [6 ]Department of Health, the Government of Hong Kong, Hong Kong, China
                Author notes
                Address correspondence to H.K. Lai, School of Public Health, 5/F William MW Mong Block, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. Telephone: (852)-2831-5057. E-mail: tsangh@ 123456hku.hk
                Article
                ehp.1408264
                10.1289/ehp.1408264
                4629733
                25910279
                cb937f1d-82df-4608-9990-9a43d77d4eb9

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 11 February 2014
                : 22 April 2015
                : 24 April 2015
                : 01 November 2015
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article