15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effluent Markers Related to Epithelial Mesenchymal Transition with Adjusted Values for Effluent Cancer Antigen 125 in Peritoneal Dialysis Patients

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives. Epithelial mesenchymal transition (EMT) is important for peritoneal deterioration. We evaluated the association between peritoneal solute transport rate (PSTR) and effluent markers related to EMT with adjusted values for effluent cancer antigen 125 (CA125). Methods. One hundred five incident peritoneal dialysis (PD) patients on PD for 25 (12–68) months with biocompatible solutions were included in the study. Fast peritoneal equilibration test was used to evaluate PSTR. Effluent hepatocyte growth factor (HGF), bone morphogenic protein-7 (BMP-7), vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and CA125 at 4 h were measured. Results. Patients with dialysate/plasma creatinine ≧0.82 showed significantly higher effluent HGF (240 versus 133 pg/mL, P < .001), VEGF, IL-6, and IL6/CA125 levels than the others but no significant differences in effluent HGF/CA125, BMP-7, and BMP7/CA125 were observed. Conclusion. Increase in the effluent HGF levels as a compensatory mechanism is a marker of peritoneal deterioration, but controversy remains regarding adjusted value for CA125.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells.

          During continuous ambulatory peritoneal dialysis, the peritoneum is exposed to bioincompatible dialysis fluids that cause denudation of mesothelial cells and, ultimately, tissue fibrosis and failure of ultrafiltration. However, the mechanism of this process has yet to be elucidated. Mesothelial cells isolated from effluents in dialysis fluid from patients undergoing continuous ambulatory peritoneal dialysis were phenotypically characterized by flow cytometry, confocal immunofluorescence, Western blotting, and reverse-transcriptase polymerase chain reaction. These cells were compared with mesothelial cells from omentum and treated with various stimuli in vitro to mimic the transdifferentiation observed during continuous ambulatory peritoneal dialysis. Results were confirmed in vivo by immunohistochemical analysis performed on peritoneal-biopsy specimens. Soon after dialysis is initiated, peritoneal mesothelial cells undergo a transition from an epithelial phenotype to a mesenchymal phenotype with a progressive loss of epithelial morphology and a decrease in the expression of cytokeratins and E-cadherin through an induction of the transcriptional repressor snail. Mesothelial cells also acquire a migratory phenotype with the up-regulation of expression of alpha2 integrin. In vitro analyses point to wound repair and profibrotic and inflammatory cytokines as factors that initiate mesothelial transdifferentiation. Immunohistochemical studies of peritoneal-biopsy specimens from patients undergoing continuous ambulatory peritoneal dialysis demonstrate the expression of the mesothelial markers intercellular adhesion molecule 1 and cytokeratins in fibroblast-like cells entrapped in the stroma, suggesting that these cells stemmed from local conversion of mesothelial cells. Our results suggest that mesothelial cells have an active role in the structural and functional alteration of the peritoneum during peritoneal dialysis. The findings suggest potential targets for the design of new dialysis solutions and markers for the monitoring of patients. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions.

            Peritoneal dialysis (PD) is a form of renal replacement and is based on the use of the peritoneum as a semipermeable membrane across which ultrafiltration and diffusion take place. Nevertheless, continuous exposure to bioincompatible PD solutions and episodes of peritonitis or hemoperitoneum cause acute and chronic inflammation and injury to the peritoneal membrane, which progressively undergoes fibrosis and angiogenesis and, ultimately, ultrafiltration failure. The pathophysiologic mechanisms that are involved in peritoneal functional impairment have remained elusive. Resident fibroblasts and infiltrating inflammatory cells have been considered the main entities that are responsible for structural and functional alterations of the peritoneum. Recent findings, however, demonstrated that new fibroblastic cells may arise from local conversion of mesothelial cells (MC) by epithelial-to-mesenchymal transition (EMT) during the inflammatory and repair responses that are induced by PD and pointed to MC as protagonists of peritoneal membrane deterioration. Submesothelial myofibroblasts, which participate in inflammatory responses, extracellular matrix accumulation, and angiogenesis, can originate from activated resident fibroblasts and from MC through EMT. This heterogeneous origin of myofibroblasts reveals new pathogenic mechanisms and offers novel therapeutic possibilities. This article provides a comprehensive review of recent advances on understanding the mechanisms that are implicated in peritoneal structural alterations, which have allowed the identification of the EMT of MC as a potential therapeutic target of membrane failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pathophysiology of the peritoneal membrane.

              The development of peritoneal dialysis (PD) as a successful therapy has and still depends on experimental models to test and understand critical pieces of pathophysiology. To date, the majority of studies performed in rat and rabbit models derive mechanistic insights primarily on the basis of interventional pharmacologic agents, blocking antibodies, or transient expression systems. Because body size no longer limits the performance of in vivo studies of PD, genetic mouse models are increasingly available to investigate the molecular and pathophysiologic mechanisms of the peritoneal membrane. We illustrate in this review how these investigations are catching up with other areas of biomedical research and provide direct evidence for understanding transport and ultrafiltration, responses to infection, and structural changes including fibrosis and angiogenesis. These studies are relevant to mechanisms responsible not only for the major complications of PD but also for endothelial biology, host defense, inflammation, and tissue repair processes.
                Bookmark

                Author and article information

                Journal
                Int J Nephrol
                IJN
                International Journal of Nephrology
                SAGE-Hindawi Access to Research
                2090-2158
                2011
                6 July 2011
                : 2011
                : 261040
                Affiliations
                1Department of Nephrology, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ohta-ku, Tokyo 143-8541, Japan
                2Department of Molecular Biology, Toho University School of Medicine, Tokyo 143-8541, Japan
                Author notes

                Academic Editor: Hulya Taskapan

                Article
                10.4061/2011/261040
                3132654
                21755056
                cb9e8f8f-975e-4de7-8097-bfbda22311c6
                Copyright © 2011 Sonoo Mizuiri et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 January 2011
                : 26 April 2011
                Categories
                Clinical Study

                Nephrology
                Nephrology

                Comments

                Comment on this article