Blog
About

10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The functional requirement of two structural domains within telomerase RNA emerged early in eukaryotes

      , , *

      Nucleic Acids Research

      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telomerase emerged during evolution as a prominent solution to the eukaryotic linear chromosome end-replication problem. Telomerase minimally comprises the catalytic telomerase reverse transcriptase (TERT) and telomerase RNA (TR) that provides the template for telomeric DNA synthesis. While the TERT protein is well-conserved across taxa, TR is highly divergent amongst distinct groups of species. Herein, we have identified the essential functional domains of TR from the basal eukaryotic species Trypanosoma brucei, revealing the ancestry of TR comprising two distinct structural core domains that can assemble in trans with TERT and reconstitute active telomerase enzyme in vitro. The upstream essential domain of T. brucei TR, termed the template core, constitutes three short helices in addition to the 11-nt template. Interestingly, the trypanosome template core domain lacks the ubiquitous pseudoknot found in all known TRs, suggesting later evolution of this critical structural element. The template-distal domain is a short stem-loop, termed equivalent CR4/5 (eCR4/5). While functionally similar to vertebrate and fungal CR4/5, trypanosome eCR4/5 is structurally distinctive, lacking the essential P6.1 stem-loop. Our functional study of trypanosome TR core domains suggests that the functional requirement of two discrete structural domains is a common feature of TRs and emerged early in telomerase evolution.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: found
          • Article: not found

          Mfold web server for nucleic acid folding and hybridization prediction.

           M Zuker (2003)
          The abbreviated name, 'mfold web server', describes a number of closely related software applications available on the World Wide Web (WWW) for the prediction of the secondary structure of single stranded nucleic acids. The objective of this web server is to provide easy access to RNA and DNA folding and hybridization software to the scientific community at large. By making use of universally available web GUIs (Graphical User Interfaces), the server circumvents the problem of portability of this software. Detailed output, in the form of structure plots with or without reliability information, single strand frequency plots and 'energy dot plots', are available for the folding of single sequences. A variety of 'bulk' servers give less information, but in a shorter time and for up to hundreds of sequences at once. The portal for the mfold web server is http://www.bioinfo.rpi.edu/applications/mfold. This URL will be referred to as 'MFOLDROOT'.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection.

            Telomeres are the protective end-complexes at the termini of eukaryotic chromosomes. Telomere attrition can lead to potentially maladaptive cellular changes, block cell division, and interfere with tissue replenishment. Recent advances in the understanding of human disease processes have clarified the roles of telomere biology, especially in diseases of human aging and in some aging-related processes. Greater overall telomere attrition predicts mortality and aging-related diseases in inherited telomere syndrome patients, and also in general human cohorts. However, genetically caused variations in telomere maintenance either raise or lower risks and progression of cancers, in a highly cancer type-specific fashion. Telomere maintenance is determined by genetic factors and is also cumulatively shaped by nongenetic influences throughout human life; both can interact. These and other recent findings highlight both causal and potentiating roles for telomere attrition in human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution.

              Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) interrogates local backbone flexibility in RNA at single-nucleotide resolution under diverse solution environments. Flexible RNA nucleotides preferentially sample local conformations that enhance the nucleophilic reactivity of 2'-hydroxyl groups toward electrophiles, such as N-methylisatoic anhydride (NMIA). Modified sites are detected as stops in an optimized primer extension reaction, followed by electrophoretic fragment separation. SHAPE chemistry scores local nucleotide flexibility at all four ribonucleotides in a single experiment and discriminates between base-paired versus unconstrained or flexible residues with a dynamic range of 20-fold or greater. Quantitative SHAPE reactivity information can be used to establish the secondary structure of an RNA, to improve the accuracy of structure prediction algorithms, to monitor structural differences between related RNAs or a single RNA in different states, and to detect ligand binding sites. SHAPE chemistry rarely needs significant optimization and requires two days to complete for an RNA of 100-200 nucleotides.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                16 November 2016
                04 July 2016
                04 July 2016
                : 44
                : 20
                : 9891-9901
                Affiliations
                School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 480 965 3650; Fax: +1 480 965 2747; Email: jlchen@ 123456asu.edu
                Article
                10.1093/nar/gkw605
                5175330
                27378779
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                Counts
                Pages: 11
                Product
                Categories
                RNA
                Custom metadata
                16 November 2016

                Genetics

                Comments

                Comment on this article