22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The functional requirement of two structural domains within telomerase RNA emerged early in eukaryotes

      research-article
      , , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telomerase emerged during evolution as a prominent solution to the eukaryotic linear chromosome end-replication problem. Telomerase minimally comprises the catalytic telomerase reverse transcriptase (TERT) and telomerase RNA (TR) that provides the template for telomeric DNA synthesis. While the TERT protein is well-conserved across taxa, TR is highly divergent amongst distinct groups of species. Herein, we have identified the essential functional domains of TR from the basal eukaryotic species Trypanosoma brucei, revealing the ancestry of TR comprising two distinct structural core domains that can assemble in trans with TERT and reconstitute active telomerase enzyme in vitro. The upstream essential domain of T. brucei TR, termed the template core, constitutes three short helices in addition to the 11-nt template. Interestingly, the trypanosome template core domain lacks the ubiquitous pseudoknot found in all known TRs, suggesting later evolution of this critical structural element. The template-distal domain is a short stem-loop, termed equivalent CR4/5 (eCR4/5). While functionally similar to vertebrate and fungal CR4/5, trypanosome eCR4/5 is structurally distinctive, lacking the essential P6.1 stem-loop. Our functional study of trypanosome TR core domains suggests that the functional requirement of two discrete structural domains is a common feature of TRs and emerged early in telomerase evolution.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution.

          Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) interrogates local backbone flexibility in RNA at single-nucleotide resolution under diverse solution environments. Flexible RNA nucleotides preferentially sample local conformations that enhance the nucleophilic reactivity of 2'-hydroxyl groups toward electrophiles, such as N-methylisatoic anhydride (NMIA). Modified sites are detected as stops in an optimized primer extension reaction, followed by electrophoretic fragment separation. SHAPE chemistry scores local nucleotide flexibility at all four ribonucleotides in a single experiment and discriminates between base-paired versus unconstrained or flexible residues with a dynamic range of 20-fold or greater. Quantitative SHAPE reactivity information can be used to establish the secondary structure of an RNA, to improve the accuracy of structure prediction algorithms, to monitor structural differences between related RNAs or a single RNA in different states, and to detect ligand binding sites. SHAPE chemistry rarely needs significant optimization and requires two days to complete for an RNA of 100-200 nucleotides.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity.

            We have analyzed the de novo telomere synthesis catalyzed by the enzyme telomere terminal transferase (telomerase) from Tetrahymena. Oligonucleotides representing the G-rich strand of telomeric sequences from five different organisms specifically primed the addition of TTGGGG repeats in vitro, suggesting that primer recognition may involve a DNA structure unique to these oligonucleotides. The sequence at the 3' end of the oligonucleotide primer specified the first nucleotide added in the reaction. Furthermore, the telomerase was shown to be a ribonucleoprotein complex whose RNA and protein components were both essential for activity. After extensive purification of the enzyme by a series of five different chromatographic steps, a few small low abundance RNAs copurified with the activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Telomerase: an RNP enzyme synthesizes DNA.

              Telomerase is a eukaryotic ribonucleoprotein (RNP) whose specialized reverse transcriptase action performs de novo synthesis of one strand of telomeric DNA. The resulting telomerase-mediated elongation of telomeres, which are the protective end-caps for eukaryotic chromosomes, counterbalances the inevitable attrition from incomplete DNA replication and nuclease action. The telomerase strategy to maintain telomeres is deeply conserved among eukaryotes, yet the RNA component of telomerase, which carries the built-in template for telomeric DNA repeat synthesis, has evolutionarily diverse size and sequence. Telomerase shows a distribution of labor between RNA and protein in aspects of the polymerization reaction. This article first describes the underlying conservation of a core set of structural features of telomerase RNAs important for the fundamental polymerase activity of telomerase. These include a pseudoknot-plus-template domain and at least one other RNA structural motif separate from the template-containing domain. The principles driving the diversity of telomerase RNAs are then explored. Much of the diversification of telomerase RNAs has come from apparent gain-of-function elaborations, through inferred evolutionary acquisitions of various RNA motifs used for telomerase RNP biogenesis, cellular trafficking of enzyme components, and regulation of telomerase action at telomeres. Telomerase offers broadly applicable insights into the interplay of protein and RNA functions in the context of an RNP enzyme.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                16 November 2016
                04 July 2016
                04 July 2016
                : 44
                : 20
                : 9891-9901
                Affiliations
                School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 480 965 3650; Fax: +1 480 965 2747; Email: jlchen@ 123456asu.edu
                Author information
                http://orcid.org/0000-0002-7253-2722
                Article
                10.1093/nar/gkw605
                5175330
                27378779
                cba50565-4868-4a0b-9e01-caa37d53ca8c
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 23 June 2016
                : 22 June 2016
                : 04 May 2016
                Page count
                Pages: 11
                Categories
                RNA
                Custom metadata
                16 November 2016

                Genetics
                Genetics

                Comments

                Comment on this article