3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sequential DNA hybridisation assays by fast micromixing.

      1 ,
      Lab on a chip
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prospects of performing DNA hybridisation assays in a novel sequential scheme are explored in this article. It is based on recording the kinetics of hybridisation on a microfluidic device measuring only 10 by 5 mm. It contains a split channel system for fast mixing and a subsequent meandering channel to observe the evolution of the mixture by optical means. The problems of diffusion limitations in the laminar flow regime are overcome by reducing the average diffusion distance to a few micrometers only. DNA oligomers (20-mers) of different sequences were injected on the chip for mixing. The detection of hybridisation was based on the fluorescence of DNA-intercalating dyes. Two modes of operation were investigated. First, the samples were injected into the micromixing device at a high flow rate of 40 microl min(-1). When the sample passed through the actual micromixing unit, the flow rate was reduced to allow for measurement of fluorescence levels at various steady-state reaction times in the range of 2-15 s, as defined by the channel geometry. Using this continuous flow approach, photobleaching of fluorophores could be avoided. In a buffer containing 0.2 M NaCl, 2 base-pair mismatches could routinely be detected within 5-20 s. Single base-pair mismatches were successfully identified under low salt conditions. In the second mode, the flow was completely stopped and the evolution of the total fluorescence signal influenced by the hybridisation of oligomers and photobleaching was observed. Whereas the sequence-dependent effects remained unchanged, the assay times between the mixing of two oligomers and clear identification of their hybridisation properties could be reduced down to a maximum of 5-7 s, in some cases even below 1 s.

          Related collections

          Author and article information

          Journal
          Lab Chip
          Lab on a chip
          Royal Society of Chemistry (RSC)
          1473-0197
          1473-0189
          Oct 2004
          : 4
          : 5
          Affiliations
          [1 ] Imperial College London, Dept. Chemistry, London, UKSW7 2AY. m.heule@hispeed.ch
          Article
          10.1039/b404633a
          15472736
          cba5ee9a-010d-44eb-9278-7571db9233ed
          History

          Comments

          Comment on this article