32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of the sulfur-regulated control of the cystathionine γ-lyase gene of Neurospora crassa

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cystathionine γ-lyase plays a key role in the transsulfuration pathway through its primary reaction of catalyzing the formation of cysteine from cystathionine. The Neurospora crassa cystathionine γ-lyase gene ( cys-16 + ) is of particular interest in dissecting the regulation and dynamics of transsulfuration. The aim of this study was to determine the regulatory connection of cys-16 + to the Neurospora sulfur regulatory network. In addition, the cys-16 + promoter was characterized with the goal of developing a strongly expressed and regulatable gene expression tool.

          Findings

          The cystathionine γ-lyase cys-16 + gene was cloned and characterized. The gene, which contains no introns, encodes a protein of 417 amino acids with conserved pyridoxal 5’-phosphate binding site and substrate-cofactor binding pocket. Northern blot analysis using wild type cells showed that cys-16 + transcript levels increased under sulfur limiting (derepressing) conditions and were present only at a low level under sulfur sufficient (repressing) conditions. In contrast, cys-16 + transcript levels in a Δ cys-3 regulatory mutant were present at a low level under either derepressing or repressing conditions. Gel mobility shift analysis demonstrated the presence of four CYS3 transcriptional activator binding sites on the cys-16 + promoter, which were close matches to the CYS3 consensus binding sequence.

          Conclusions

          In this work, we confirm the control of cystathionine γ-lyase gene expression by the CYS3 transcriptional activator through the loss of cys-16 + expression in a Δ cys-3 mutant and through the in vitro binding of CYS3 to the cys-16 + promoter at four sites. The highly regulated cys-16 + promoter should be a useful tool for gene expression studies in Neurospora

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase.

          Studies of nitric oxide over the past two decades have highlighted the fundamental importance of gaseous signaling molecules in biology and medicine. The physiological role of other gases such as carbon monoxide and hydrogen sulfide (H2S) is now receiving increasing attention. Here we show that H2S is physiologically generated by cystathionine gamma-lyase (CSE) and that genetic deletion of this enzyme in mice markedly reduces H2S levels in the serum, heart, aorta, and other tissues. Mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation. CSE is physiologically activated by calcium-calmodulin, which is a mechanism for H2S formation in response to vascular activation. These findings provide direct evidence that H2S is a physiologic vasodilator and regulator of blood pressure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.

            A technique for conveniently radiolabeling DNA restriction endonuclease fragments to high specific activity is described. DNA fragments are purified from agarose gels directly by ethanol precipitation and are then denatured and labeled with the large fragment of DNA polymerase I, using random oligonucleotides as primers. Over 70% of the precursor triphosphate is routinely incorporated into complementary DNA, and specific activities of over 10(9) dpm/microgram of DNA can be obtained using relatively small amounts of precursor. These "oligolabeled" DNA fragments serve as efficient probes in filter hybridization experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination

              To test the inferences of spotted microarray technology against a biochemically well-studied process, we performed transcriptional profiling of conidial germination in the filamentous fungus, Neurospora crassa. We first constructed a 70 base oligomer microarray that assays 3366 predicted genes. To estimate the relative gene expression levels and changes in gene expression during conidial germination, we analyzed a circuit design of competitive hybridizations throughout a time course using a Bayesian analysis of gene expression level. Remarkable consistency of mRNA profiles with previously published northern data was observed. Genes were hierarchically clustered into groups with respect to their expression profiles over the time course of conidial germination. A functional classification database was employed to characterize the global picture of gene expression. Consensus motif searches identified a putative regulatory component associated with genes involved in ribosomal biogenesis. Our transcriptional profiling data correlate well with biochemical and physiological processes associated with conidial germination and will facilitate functional predictions of novel genes in N.crassa and other filamentous ascomycete species. Furthermore, our dataset on conidial germination allowed comparisons to transcriptional mechanisms associated with germination processes of diverse propagules, such as teliospores of the phytopathogenic fungus Ustilago maydis and spores of the social amoeba Dictyostelium discoideum.
                Bookmark

                Author and article information

                Journal
                BMC Res Notes
                BMC Res Notes
                BMC Research Notes
                BioMed Central
                1756-0500
                2012
                2 July 2012
                : 5
                : 339
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
                Article
                1756-0500-5-339
                10.1186/1756-0500-5-339
                3496659
                22748183
                cba6c32d-1d34-4ef7-b901-0a587a6abb25
                Copyright ©2012 Reveal and Paietta; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 January 2012
                : 5 June 2012
                Categories
                Short Report

                Medicine
                cystathionine γ-lyase,transsulfuration,cys3 regulator,cys-16+,neurospora crassa,sulfur gene regulation

                Comments

                Comment on this article