25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eye Movements in Parkinson’s Disease and Inherited Parkinsonian Syndromes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite extensive research, the functions of the basal ganglia (BG) in movement control have not been fully understood. Eye movements, particularly saccades, are convenient indicators of BG function. Here, we review the main oculomotor findings reported in Parkinson’s disease (PD) and genetic parkinsonian syndromes. PD is a progressive, neurodegenerative disorder caused by dopaminergic cell loss within the substantia nigra pars compacta, resulting in depletion of striatal dopamine and subsequent increased inhibitory BG output from the internal globus pallidus and the substantia nigra pars reticulata. Eye movement abnormalities are common in PD: anomalies are more evident in voluntary than reflexive saccades in the initial stages, but visually guided saccades may also be involved at later stages. Saccadic hypometria (including abnormally fragmented saccades), reduced accuracy, and increased latency are among the most prominent deficits. PD patients show also unusually frequent and large square wave jerks and impaired inhibition of reflexive saccades when voluntary mirror saccades are required. Poor convergence ability and altered pursuit are common. Inherited parkinsonisms are a heterogeneous group of rare syndromes due to gene mutations causing symptoms resembling those of PD. Eye movement characteristics of some parkinsonisms have been studied. While sharing some PD features, each syndrome has a distinctive profile that could contribute to better define the clinical phenotype of parkinsonian disorders. Moreover, because the pathogenesis and the underlying neural circuit failure of inherited parkinsonisms are often well defined, they might offer a better prospect than idiopathic PD to understand the BG function.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Parkinson's disease: clinical features and diagnosis.

          Parkinson's disease (PD) is a progressive neurological disorder characterised by a large number of motor and non-motor features that can impact on function to a variable degree. This review describes the clinical characteristics of PD with emphasis on those features that differentiate the disease from other parkinsonian disorders. A MedLine search was performed to identify studies that assess the clinical characteristics of PD. Search terms included "Parkinson's disease", "diagnosis" and "signs and symptoms". Because there is no definitive test for the diagnosis of PD, the disease must be diagnosed based on clinical criteria. Rest tremor, bradykinesia, rigidity and loss of postural reflexes are generally considered the cardinal signs of PD. The presence and specific presentation of these features are used to differentiate PD from related parkinsonian disorders. Other clinical features include secondary motor symptoms (eg, hypomimia, dysarthria, dysphagia, sialorrhoea, micrographia, shuffling gait, festination, freezing, dystonia, glabellar reflexes), non-motor symptoms (eg, autonomic dysfunction, cognitive/neurobehavioral abnormalities, sleep disorders and sensory abnormalities such as anosmia, paresthesias and pain). Absence of rest tremor, early occurrence of gait difficulty, postural instability, dementia, hallucinations, and the presence of dysautonomia, ophthalmoparesis, ataxia and other atypical features, coupled with poor or no response to levodopa, suggest diagnoses other than PD. A thorough understanding of the broad spectrum of clinical manifestations of PD is essential to the proper diagnosis of the disease. Genetic mutations or variants, neuroimaging abnormalities and other tests are potential biomarkers that may improve diagnosis and allow the identification of persons at risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hereditary early-onset Parkinson's disease caused by mutations in PINK1.

            Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra. We previously mapped a locus for a rare familial form of PD to chromosome 1p36 (PARK6). Here we show that mutations in PINK1 (PTEN-induced kinase 1) are associated with PARK6. We have identified two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families: a truncating nonsense mutation and a missense mutation at a highly conserved amino acid. Cell culture studies suggest that PINK1 is mitochondrially located and may exert a protective effect on the cell that is abrogated by the mutations, resulting in increased susceptibility to cellular stress. These data provide a direct molecular link between mitochondria and the pathogenesis of PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mammalian superior colliculus: laminar structure and connections.

              The superior colliculus is a laminated midbrain structure that acts as one of the centers organizing gaze movements. This review will concentrate on sensory and motor inputs to the superior colliculus, on its internal circuitry, and on its connections with other brainstem gaze centers, as well as its extensive outputs to those structures with which it is reciprocally connected. This will be done in the context of its laminar arrangement. Specifically, the superficial layers receive direct retinal input, and are primarily visual sensory in nature. They project upon the visual thalamus and pretectum to influence visual perception. These visual layers also project upon the deeper layers, which are both multimodal, and premotor in nature. Thus, the deep layers receive input from both somatosensory and auditory sources, as well as from the basal ganglia and cerebellum. Sensory, association, and motor areas of cerebral cortex provide another major source of collicular input, particularly in more encephalized species. For example, visual sensory cortex terminates superficially, while the eye fields target the deeper layers. The deeper layers are themselves the source of a major projection by way of the predorsal bundle which contributes collicular target information to the brainstem structures containing gaze-related burst neurons, and the spinal cord and medullary reticular formation regions that produce head turning.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/381325
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                09 November 2017
                2017
                : 8
                : 592
                Affiliations
                [1] 1Laboratory of Sensorimotor Research, National Eye Institute, NIH , Bethesda, MD, United States
                Author notes

                Edited by: Elena H. Martínez-Lapiscina, Hospital Clínic de Barcelona, Spain

                Reviewed by: Heather Mack, Eye Surgery Associates, Australia; Gunnar P. H. Dietz, Schwabe Pharma Deutschland, Germany; Cecilia García Cena, Universidad Politécnica de Madrid (UPM), Spain

                *Correspondence: Elena Pretegiani, elena.pretegiani@ 123456nih.gov

                Specialty section: This article was submitted to Neuro-Ophthalmology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2017.00592
                5684125
                29170650
                cbab9e83-113d-4962-9beb-13180a9af485
                Copyright © 2017 Pretegiani and Optican.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 April 2017
                : 23 October 2017
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 70, Pages: 7, Words: 5596
                Funding
                Funded by: National Eye Institute 10.13039/100000053
                Award ID: Intramural Research Programs of NEI
                Categories
                Neuroscience
                Mini Review

                Neurology
                saccades,basal ganglia,α-synuclein,park,manganese,gaucher disease,brain iron accumulation,parkinsonism

                Comments

                Comment on this article