55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma Based Markers of [ 11C] PiB-PET Brain Amyloid Burden

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Changes in brain amyloid burden have been shown to relate to Alzheimer's disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer's disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer's Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [ 11C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden – c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E – were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE ϵ 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core.

          This is a progress report of the Alzheimer's Disease Neuroimaging Initiative (ADNI) positron emission tomography (PET) Core. The Core has supervised the acquisition, quality control, and analysis of longitudinal [(18)F]fluorodeoxyglucose PET (FDG-PET) data in approximately half of the ADNI cohort. In an "add on" study, approximately 100 subjects also underwent scanning with [(11)C] Pittsburgh compound B PET for amyloid imaging. The Core developed quality control procedures and standardized image acquisition by developing an imaging protocol that has been widely adopted in academic and pharmaceutical industry studies. Data processing provides users with scans that have identical orientation and resolution characteristics despite acquisition on multiple scanner models. The Core labs have used many different approaches to characterize differences between subject groups (Alzheimer's disease, mild cognitive impairment, controls), to examine longitudinal change over time in glucose metabolism and amyloid deposition, and to assess the use of FDG-PET as a potential outcome measure in clinical trials. ADNI data indicate that FDG-PET increases statistical power over traditional cognitive measures, might aid subject selection, and could substantially reduce the sample size in a clinical trial. Pittsburgh compound B PET data showed expected group differences, and identified subjects with significant annual increases in amyloid load across the subject groups. The next activities of the PET core in ADNI will entail developing standardized protocols for amyloid imaging using the [(18)F]-labeled amyloid imaging agent AV45, which can be delivered to virtually all ADNI sites. ADNI has demonstrated the feasibility and utility of multicenter PET studies and is helping to clarify the role of biomarkers in the study of aging and dementia. Copyright 2010 The Alzheimer
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease.

            Blood-based analytes may be indicators of pathological processes in Alzheimer disease (AD). To identify plasma proteins associated with AD pathology using a combined proteomic and neuroimaging approach. Discovery-phase proteomics to identify plasma proteins associated with correlates of AD pathology. Confirmation and validation using immunodetection in a replication set and an animal model. A multicenter European study (AddNeuroMed) and the Baltimore Longitudinal Study of Aging. Patients with AD, subjects with mild cognitive impairment, and healthy controls with standardized clinical assessments and structural neuroimaging. Association of plasma proteins with brain atrophy, disease severity, and rate of clinical progression. Extension studies in humans and transgenic mice tested the association between plasma proteins and brain amyloid. Clusterin/apolipoprotein J was associated with atrophy of the entorhinal cortex, baseline disease severity, and rapid clinical progression in AD. Increased plasma concentration of clusterin was predictive of greater fibrillar amyloid-beta burden in the medial temporal lobe. Subjects with AD had increased clusterin messenger RNA in blood, but there was no effect of single-nucleotide polymorphisms in the gene encoding clusterin with gene or protein expression. APP/PS1 transgenic mice showed increased plasma clusterin, age-dependent increase in brain clusterin, as well as amyloid and clusterin colocalization in plaques. These results demonstrate an important role of clusterin in the pathogenesis of AD and suggest that alterations in amyloid chaperone proteins may be a biologically relevant peripheral signature of AD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteome-based plasma biomarkers for Alzheimer's disease.

              Alzheimer's disease is a common and devastating disease for which there is no readily available biomarker to aid diagnosis or to monitor disease progression. Biomarkers have been sought in CSF but no previous study has used two-dimensional gel electrophoresis coupled with mass spectrometry to seek biomarkers in peripheral tissue. We performed a case-control study of plasma using this proteomics approach to identify proteins that differ in the disease state relative to aged controls. For discovery-phase proteomics analysis, 50 people with Alzheimer's dementia were recruited through secondary services and 50 normal elderly controls through primary care. For validation purposes a total of 511 subjects with Alzheimer's disease and other neurodegenerative diseases and normal elderly controls were examined. Image analysis of the protein distribution of the gels alone identifies disease cases with 56% sensitivity and 80% specificity. Mass spectrometric analysis of the changes observed in two-dimensional electrophoresis identified a number of proteins previously implicated in the disease pathology, including complement factor H (CFH) precursor and alpha-2-macroglobulin (alpha-2M). Using semi-quantitative immunoblotting, the elevation of CFH and alpha-2M was shown to be specific for Alzheimer's disease and to correlate with disease severity although alternative assays would be necessary to improve sensitivity and specificity. These findings suggest that blood may be a rich source for biomarkers of Alzheimer's disease and that CFH, together with other proteins such as alpha-2M may be a specific markers of this illness.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                24 September 2012
                : 7
                : 9
                : e44260
                Affiliations
                [1 ]National Institute of Health Research Biomedical Research Centre for Mental Health, South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
                [2 ]King's College London, Institute of Psychiatry, London, United Kingdom
                [3 ]Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, United States of America
                [4 ]Proteome Sciences plc, Cobham, Surrey, United Kingdom
                [5 ]School of Neurology, University of Eastern Finland and University Hospital of Kuopio, Kuopio, Finland
                [6 ]Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
                [7 ]3rd Department of Neurology, “G. Papanicolaou” Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
                [8 ]Department of Geriatric Medicine, Grontople de Toulouse, Toulouse University Hospital, Toulouse, France
                [9 ]Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
                Mental Health Research Institute of Victoria, Australia
                Author notes

                Competing Interests: Intellectual property has been registered on the use of plasma proteins for use as biomarkers for AD by King's College London and Proteome Sciences, with SL and M. Thambisetty named as inventors. IP and MW were full-time employees of Proteome Sciences, London, United Kingdom, at the time of their contribution to the work described in this manuscript. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials. Patent Title Methods and Compositions Relating to Alzheimer's Disease Subject Covers utility of around 30 proteins, specifically listing 16 in the Dependent claims for diagnosis of Alzheimer's disease Filing Proteome Sciences with King's Business United Kingdom Priority GB0421639.6 dated 29/09/2004 PCT Application PCT/GB2005/003756 dated 29/09/2005 Application in Europe, Japan, United States, Australia, and Canada, dated 15/03/2007 to 16/10/2007. In addition Alzheimer's Disease Neuroimaging Initiative recieved funding from: Abbott; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: M. Thambisetty AS SL SN RD. Analyzed the data: SJK. Wrote the paper: SJK M. Thambisetty AS SN RD. APOE measurements in AddNeuroMed and DCR: JRC AH IP MW MKL KL. Input on image analysis: EW. Provided cluster computing support: CJ. AddNeuroMed clinical centre lead: HS IK M. Tsolaki BV PM.

                Article
                PONE-D-12-10525
                10.1371/journal.pone.0044260
                3454385
                23028511
                cbb09603-afce-43e4-bc4a-bbe92e1db60a
                Copyright @ 2012

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 13 April 2012
                : 31 July 2012
                Page count
                Pages: 10
                Funding
                Alzheimer's Disease Neuroimaging Initiative (ADNI) data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by National Institutes of Health grants P30 AG010129 and K01 AG030514. This study was supported by InnoMed (Innovative Medicines in Europe www.imi.europa.eu/) an Integrated Project funded by the European Union of the Sixth Framework program priority FP6-2004-LIFESCIHEALTH-5, Life Sciences, Genomics and Biotechnology for Health. This study was also supported by funds from the National Institutes for Health Research Biomedical Research Centre for Mental Health at the South London and Maudsley National Health Service Foundation Trust and Institute of Psychiatry, King's College London. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Neuroscience
                Neuroimaging
                Pet
                Medicine
                Diagnostic Medicine
                Pathology
                General Pathology
                Biomarkers
                Neurology
                Dementia
                Alzheimer Disease
                Radiology
                Nuclear Medicine
                PET imaging

                Uncategorized
                Uncategorized

                Comments

                Comment on this article