Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here, we reveal the conserved role played by a single amino acid position (TM2.6) located in the second transmembrane domain of two-pore domain potassium (K2P) channels. Mutations of TM2.6 to aspartate or asparagine increase channel activity for all vertebrate K2P channels. Using two-electrode voltage-clamp and single-channel recording techniques, we find that mutation of TM2.6 promotes channel gating via the selectivity filter gate and increases single channel open probability. Furthermore, channel gating can be progressively tuned by using different amino acid substitutions. Finally, we show that the role of TM2.6 was conserved during evolution by rationally designing gain-of-function mutations in four Caenorhabditis elegans K2P channels using CRISPR/ Cas9 gene editing. This study thus describes a simple and powerful strategy to systematically manipulate the activity of an entire family of potassium channels.

          Abstract

          Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here authors reveal the role played by a single residue in the second transmembrane domain of vertebrate and invertebrate two-pore domain potassium channels.

          Related collections

          Most cited references 56

          • Record: found
          • Abstract: found
          • Article: not found

          WebLogo: a sequence logo generator.

          WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment. Sequence logos provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive. Each logo consists of stacks of letters, one stack for each position in the sequence. The overall height of each stack indicates the sequence conservation at that position (measured in bits), whereas the height of symbols within the stack reflects the relative frequency of the corresponding amino or nucleic acid at that position. WebLogo has been enhanced recently with additional features and options, to provide a convenient and highly configurable sequence logo generator. A command line interface and the complete, open WebLogo source code are available for local installation and customization. Copyright 2004 Cold Spring Harbor Laboratory Press
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genetics of Caenorhabditis elegans.

            Methods are described for the isolation, complementation and mapping of mutants of Caenorhabditis elegans, a small free-living nematode worm. About 300 EMS-induced mutants affecting behavior and morphology have been characterized and about one hundred genes have been defined. Mutations in 77 of these alter the movement of the animal. Estimates of the induced mutation frequency of both the visible mutants and X chromosome lethals suggests that, just as in Drosophila, the genetic units in C. elegans are large.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular background of leak K+ currents: two-pore domain potassium channels.

              Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
                Bookmark

                Author and article information

                Contributors
                olga.andrini@univ-lyon1.fr
                thomas.boulin@univ-lyon1.fr
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                15 February 2019
                15 February 2019
                2019
                : 10
                Affiliations
                [1 ]ISNI 0000 0001 2150 7757, GRID grid.7849.2, Institut NeuroMyoGène, Univ Lyon, , Université Claude Bernard Lyon 1, ; CNRS UMR 5310, INSERM U1217, Lyon, 69008 France
                [2 ]ISNI 0000 0001 0661 1492, GRID grid.256681.e, Department of Physiology, College of Medicine and Institute of Health Sciences, , Gyeongsang National University, ; Jinju, 52727 South Korea
                [3 ]ISNI 0000 0001 2337 2892, GRID grid.10737.32, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, CNRS UMR 7275, , Université de Nice Sophia Antipolis, ; Valbonne, 06560 France
                Article
                8710
                10.1038/s41467-019-08710-3
                6377628
                30770809
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized

                Comments

                Comment on this article