13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Electronic and phonon excitations in \(\alpha -\mathrm{RuC}{\mathrm{l}}_{3}\)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Anyons in an exactly solved model and beyond

          A spin 1/2 system on a honeycomb lattice is studied. The interactions between nearest neighbors are of XX, YY or ZZ type, depending on the direction of the link; different types of interactions may differ in strength. The model is solved exactly by a reduction to free fermions in a static \(\mathbb{Z}_{2}\) gauge field. A phase diagram in the parameter space is obtained. One of the phases has an energy gap and carries excitations that are Abelian anyons. The other phase is gapless, but acquires a gap in the presence of magnetic field. In the latter case excitations are non-Abelian anyons whose braiding rules coincide with those of conformal blocks for the Ising model. We also consider a general theory of free fermions with a gapped spectrum, which is characterized by a spectral Chern number \(\nu\). The Abelian and non-Abelian phases of the original model correspond to \(\nu=0\) and \(\nu=\pm 1\), respectively. The anyonic properties of excitation depend on \(\nu\bmod 16\), whereas \(\nu\) itself governs edge thermal transport. The paper also provides mathematical background on anyons as well as an elementary theory of Chern number for quasidiagonal matrices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resonant bonding in crystalline phase-change materials.

            The identification of materials suitable for non-volatile phase-change memory applications is driven by the need to find materials with tailored properties for different technological applications and the desire to understand the scientific basis for their unique properties. Here, we report the observation of a distinctive and characteristic feature of phase-change materials. Measurements of the dielectric function in the energy range from 0.025 to 3 eV reveal that the optical dielectric constant is 70-200% larger for the crystalline than the amorphous phases. This difference is attributed to a significant change in bonding between the two phases. The optical dielectric constant of the amorphous phases is that expected of a covalent semiconductor, whereas that of the crystalline phases is strongly enhanced by resonant bonding effects. The quantification of these is enabled by measurements of the electronic polarizability. As this bonding in the crystalline state is a unique fingerprint for phase-change materials, a simple scheme to identify and characterize potential phase-change materials emerges.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice materialNa2IrO3

                Bookmark

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                2469-9950
                2469-9969
                October 2017
                October 11 2017
                : 96
                : 16
                Article
                10.1103/PhysRevB.96.165120
                cbc493fd-c746-4538-964b-e1e9786abdc3
                © 2017

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article