100
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new software was used to predict exported proteins that are conserved between malaria parasites infecting rodents and those infecting humans, revealing a lineage-specific expansion of exported proteins.

          Abstract

          Background

          The apicomplexan parasite Plasmodium falciparum causes the most severe form of malaria in humans. After invasion into erythrocytes, asexual parasite stages drastically alter their host cell and export remodeling and virulence proteins. Previously, we have reported identification and functional analysis of a short motif necessary for export of proteins out of the parasite and into the red blood cell.

          Results

          We have developed software for the prediction of exported proteins in the genus Plasmodium, and identified exported proteins conserved between malaria parasites infecting rodents and the two major causes of human malaria, P. falciparum and P. vivax. This conserved 'exportome' is confined to a few subtelomeric chromosomal regions in P. falciparum and the synteny of these and surrounding regions is conserved in P. vivax. We have identified a novel gene family PHIST (for Plasmodium helical interspersed subtelomeric family) that shares a unique domain with 72 paralogs in P. falciparum and 39 in P. vivax; however, there is only one member in each of the three species studied from the P. berghei lineage.

          Conclusion

          These data suggest radiation of genes encoding remodeling and virulence factors from a small number of loci in a common Plasmodium ancestor, and imply a closer phylogenetic relationship between the P. vivax and P. falciparum lineages than previously believed. The presence of a conserved 'exportome' in the genus Plasmodium has important implications for our understanding of both common mechanisms and species-specific differences in host-parasite interactions, and may be crucial in developing novel antimalarial drugs to this infectious disease.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Profile hidden Markov models.

          S. Eddy (1998)
          The recent literature on profile hidden Markov model (profile HMM) methods and software is reviewed. Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences. Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several software implementations and two large libraries of profile HMMs of common protein domains are available. HMM methods performed comparably to threading methods in the CASP2 structure prediction exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human malaria parasites in continuous culture.

            Plasmodium falciparum can now be maintained in continuous culture in human erythrocytes incubated at 38 degrees C in RPMI 1640 medium with human serum under an atmosphere with 7 percent carbon dioxide and low oxygen (1 or 5 percent). The original parasite material, derived from an infected Aotus trivirgatus monkey, was diluted more than 100 million times by the addition of human erythrocytes at 3- or 4-day intervals. The parasites continued to reproduce in their normal asexual cycle of approximately 48 hours but were no longer highly synchronous. The have remained infective to Aotus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measuring the accuracy of diagnostic systems.

              J Swets (1988)
              Diagnostic systems of several kinds are used to distinguish between two classes of events, essentially "signals" and "noise". For them, analysis in terms of the "relative operating characteristic" of signal detection theory provides a precise and valid measure of diagnostic accuracy. It is the only measure available that is uninfluenced by decision biases and prior probabilities, and it places the performances of diverse systems on a common, easily interpreted scale. Representative values of this measure are reported here for systems in medical imaging, materials testing, weather forecasting, information retrieval, polygraph lie detection, and aptitude testing. Though the measure itself is sound, the values obtained from tests of diagnostic systems often require qualification because the test data on which they are based are of unsure quality. A common set of problems in testing is faced in all fields. How well these problems are handled, or can be handled in a given field, determines the degree of confidence that can be placed in a measured value of accuracy. Some fields fare much better than others.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2006
                20 February 2006
                : 7
                : 2
                : R12
                Affiliations
                [1 ]The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
                [2 ]Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
                [3 ]The Institute for Genomic Research (TIGR), Rockville, Maryland 20850, USA
                Article
                gb-2006-7-2-r12
                10.1186/gb-2006-7-2-r12
                1431722
                16507167
                cbca9dc4-7524-49a1-b695-45c67fc36f24
                Copyright © 2006 Sargeant et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article