0
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Authors - publish your SDGs-related research with EDP Sciences. Find out more.

      • Record: found
      • Abstract: found
      • Article: found

      Climatic niche shift of aquatic plant invaders between native and invasive ranges: a test using 10 species across different biomes on a global scale

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Maximum entropy modeling of species geographic distributions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution.

            Environmental niche models, which are generated by combining species occurrence data with environmental GIS data layers, are increasingly used to answer fundamental questions about niche evolution, speciation, and the accumulation of ecological diversity within clades. The question of whether environmental niches are conserved over evolutionary time scales has attracted considerable attention, but often produced conflicting conclusions. This conflict, however, may result from differences in how niche similarity is measured and the specific null hypothesis being tested. We develop new methods for quantifying niche overlap that rely on a traditional ecological measure and a metric from mathematical statistics. We reexamine a classic study of niche conservatism between sister species in several groups of Mexican animals, and, for the first time, address alternative definitions of "niche conservatism" within a single framework using consistent methods. As expected, we find that environmental niches of sister species are more similar than expected under three distinct null hypotheses, but that they are rarely identical. We demonstrate how our measures can be used in phylogenetic comparative analyses by reexamining niche divergence in an adaptive radiation of Cuban anoles. Our results show that environmental niche overlap is closely tied to geographic overlap, but not to phylogenetic distances, suggesting that niche conservatism has not constrained local communities in this group to consist of closely related species. We suggest various randomization tests that may prove useful in other areas of ecology and evolutionary biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Will plant movements keep up with climate change?

              In the face of anthropogenic climate change, species must acclimate, adapt, move, or die. Although some species are moving already, their ability to keep up with the faster changes expected in the future is unclear. 'Migration lag' is a particular concern with plants, because it could threaten both biodiversity and carbon storage. Plant movements are not realistically represented in models currently used to predict future vegetation and carbon-cycle feedbacks, so there is an urgent need to understand how much of a problem failure to track climate change is likely to be. Therefore, in this review, we compare how fast plants need to move with how fast they can move; that is, the velocity of climate change with the velocity of plant movement. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Knowledge & Management of Aquatic Ecosystems
                Knowl. Manag. Aquat. Ecosyst.
                EDP Sciences
                1961-9502
                2017
                June 16 2017
                2017
                : 418
                : 27
                Article
                10.1051/kmae/2017019
                cbd7615a-4a7a-4320-b874-71151d3cec07
                © 2017
                History

                Comments

                Comment on this article