88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein-Protein Interaction Detection: Methods and Analysis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein-protein interaction plays key role in predicting the protein function of target protein and drug ability of molecules. The majority of genes and proteins realize resulting phenotype functions as a set of interactions. The in vitro and in vivo methods like affinity purification, Y2H (yeast 2 hybrid), TAP (tandem affinity purification), and so forth have their own limitations like cost, time, and so forth, and the resultant data sets are noisy and have more false positives to annotate the function of drug molecules. Thus, in silico methods which include sequence-based approaches, structure-based approaches, chromosome proximity, gene fusion, in silico 2 hybrid, phylogenetic tree, phylogenetic profile, and gene expression-based approaches were developed. Elucidation of protein interaction networks also contributes greatly to the analysis of signal transduction pathways. Recent developments have also led to the construction of networks having all the protein-protein interactions using computational methods for signaling pathways and protein complex identification in specific diseases.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

          Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple and automated procedure for 192 yeast proteins, with positive responses identified by their positions in the array. In a second approach, we pooled cells expressing one of about 6,000 activation domain fusions to generate a library. We used a high-throughput screening procedure to screen nearly all of the 6,000 predicted yeast proteins, expressed as Gal4 DNA-binding domain fusion proteins, against the library, and characterized positives by sequence analysis. These approaches resulted in the detection of 957 putative interactions involving 1,004 S. cerevisiae proteins. These data reveal interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes. The results of these screens are shown here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive two-hybrid analysis to explore the yeast protein interactome.

            Protein-protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the approximately 6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P., et al. (2000) Nature (London) 403, 623-627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions.

              I Xenarios (2002)
              The Database of Interacting Proteins (DIP: http://dip.doe-mbi.ucla.edu) is a database that documents experimentally determined protein-protein interactions. It provides the scientific community with an integrated set of tools for browsing and extracting information about protein interaction networks. As of September 2001, the DIP catalogs approximately 11 000 unique interactions among 5900 proteins from >80 organisms; the vast majority from yeast, Helicobacter pylori and human. Tools have been developed that allow users to analyze, visualize and integrate their own experimental data with the information about protein-protein interactions available in the DIP database.
                Bookmark

                Author and article information

                Journal
                Int J Proteomics
                Int J Proteomics
                IJPRO
                International Journal of Proteomics
                Hindawi Publishing Corporation
                2090-2166
                2090-2174
                2014
                17 February 2014
                : 2014
                : 147648
                Affiliations
                1Department of CSE, VR Siddhartha Engineering College, Vijayawada 520007, India
                2Department of CSE, Mahatma Gandhi Institute of Technology, Hyderabad 500075, India
                Author notes
                *V. Srinivasa Rao: drvsrao9@ 123456gmail.com

                Academic Editor: Yaoqi Zhou

                Article
                10.1155/2014/147648
                3947875
                24693427
                cbe9a4c8-b93e-47c2-88e0-71dc4f80fcff
                Copyright © 2014 V. Srinivasa Rao et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 October 2013
                : 5 December 2013
                : 20 December 2013
                Categories
                Review Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article