7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries.

      1 , , ,
      Nanoscale
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hollow micro/nano-arrays have attracted tremendous attention in the field of energy conversion and storage, but such structures usually compromise the volumetric energy density of the electrode materials. Frogspawn consists of a spawn core and a transparent jelly shell organized in a hierarchical porous array, which exhibits superior mechanical strength and high-efficiency oxygen permeability. It can be used as a model for designing a new high-performance electrode material, which has advantages such as a high surface area, fast mass transport and superior durability. Herein, we report a frogspawn-like NaTi2(PO4)3/C array prepared by a facile preform impregnation strategy. The framework is formed by a hollow carbon sphere connected by the NaTi2(PO4)3/C skeleton, and its hollow is filled with the NaTi2(PO4)3 nanospheres. The whole hierarchical porous three-dimensional array copies the structure of a frogspawn. This unique structure not only enables easy electrolyte percolation and fast electron/ion transport, but also enhances the reversible capacity and cycling durability. When it is applied as an anode of the aqueous sodium ion battery, it exhibits favorable high rate capability and superior cycling stability, and retains 89% of the initial capacity after two thousand cycles at 20 C. Moreover, the full cell using the frogspawn-inspired NaTi2(PO4)3-C as the anode and Na0.44MnO2 as the cathode is capable of ultralong cycling up to one thousand cycles at alternate 10 and 60 C, which is among the best of state-of-the-art aqueous sodium ion systems. Therefore, the frogspawn-inspired architecture provides a new strategy to the tailored design of polyanion materials for high-power applications.

          Related collections

          Author and article information

          Journal
          Nanoscale
          Nanoscale
          Royal Society of Chemistry (RSC)
          2040-3372
          2040-3364
          Nov 28 2015
          : 7
          : 44
          Affiliations
          [1 ] Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang, China. chaodenghsd@sina.com.
          Article
          10.1039/c5nr06505d
          26490545
          cbebf324-5216-4d19-9055-4c67c43a13db
          History

          Comments

          Comment on this article