9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Alpha-melanocyte-stimulating hormone counteracts the suppressive effect of UVB on Nrf2 and Nrf-dependent gene expression in human skin.

      Endocrinology
      Basic-Leucine Zipper Transcription Factors, biosynthesis, Humans, Immunohistochemistry, Keratinocytes, drug effects, metabolism, Melanocytes, NF-E2-Related Factor 2, physiology, Nuclear Respiratory Factor 1, Organ Culture Techniques, Skin, radiation effects, Ultraviolet Rays, Up-Regulation, alpha-MSH, pharmacology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human skin is constantly exposed to UV light, the most ubiquitous environmental stressor. Here, we investigated the expression and regulation of Nrf1-3, transcription factors crucially involved in protection against oxidative stress in human skin cells in vitro, ex vivo, and in situ. In particular, we examined whether alpha-MSH, a UV-induced peptide, is capable of modulating Nrf2 and Nrf-dependent gene expression. Nrf1, -2, and -3 were found to be expressed in various cutaneous cell types in vitro. Surprisingly, UVB irradiation at physiological doses (10 mJ/cm(2)) reduced Nrf2 and Nrf-dependent gene expression in normal keratinocytes and melanocytes in vitro as well as ex vivo in skin organ cultures. alpha-MSH alone significantly increased Nrf2 as well as Nrf-dependent heme oxygenase-1, gamma-glutamylcysteine-synthetase, and glutathione-S-transferase Pi gene expression in both keratinocytes and melanocytes. This effect of alpha-MSH occurred at physiological doses and was due to transcriptional induction, mimicked by the artificial cAMP inducer forskolin, and blocked by protein kinase A pathway inhibition. In silico promoter analysis of Nrf2 further identified several putative binding sites for activator protein 1 and cAMP response element-binding protein, transcription factors typically activated by alpha-MSH. Importantly, alpha-MSH prevented or even overcompensated the UVB-induced suppression of Nrf2 and Nrf-dependent genes not only in normal keratinocytes and melanocytes in vitro but also in skin organ cultures. These findings, for the first time, show regulation of Nrf2 and Nrf-dependent genes by alpha-MSH. Our data also highlight a novel facet in the cytoprotective and antioxidative effector mechanisms of alpha-MSH and perhaps of related melanocortin peptides.

          Related collections

          Author and article information

          Comments

          Comment on this article