9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gaps and nodes between fossil and extant insects

      Systematic Entomology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogeny of the ants: diversification in the age of angiosperms.

          C. Moreau (2006)
          We present a large-scale molecular phylogeny of the ants (Hymenoptera: Formicidae), based on 4.5 kilobases of sequence data from six gene regions extracted from 139 of the 288 described extant genera, representing 19 of the 20 subfamilies. All but two subfamilies are recovered as monophyletic. Divergence time estimates calibrated by minimum age constraints from 43 fossils indicate that most of the subfamilies representing extant ants arose much earlier than previously proposed but only began to diversify during the Late Cretaceous to Early Eocene. This period also witnessed the rise of angiosperms and most herbivorous insects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluating alternative hypotheses for the early evolution and diversification of ants.

            Ants are the world's most diverse and ecologically dominant eusocial organisms. Resolving the phylogeny and timescale for major ant lineages is vital to understanding how they achieved this success. Morphological, molecular, and paleontological studies, however, have presented conflicting views on early ant evolution. To address these issues, we generated the largest ant molecular phylogenetic data set published to date, containing approximately 6 kb of DNA sequence from 162 species representing all 20 ant subfamilies and 10 aculeate outgroup families. When these data were analyzed with and without outgroups, which are all distantly related to ants and hence long-branched, we obtained conflicting ingroup topologies for some early ant lineages. This result casts strong doubt on the existence of a poneroid clade as currently defined. We compare alternate attachments of the outgroups to the ingroup tree by using likelihood tests, and find that several alternative rootings cannot be rejected by the data. These alternatives imply fundamentally different scenarios for the early evolution of ant morphology and behavior. Our data strongly support several notable relationships within the more derived formicoid ants, including placement of the enigmatic subfamily Aenictogitoninae as sister to Dorylus army ants. We use the molecular data to estimate divergence times, employing a strategy distinct from previous work by incorporating the extensive fossil record of other aculeate Hymenoptera as well as that of ants. Our age estimates for the most recent common ancestor of extant ants range from approximately 115 to 135 million years ago, indicating that a Jurassic origin is highly unlikely.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Missing data and the design of phylogenetic analyses.

              Concerns about the deleterious effects of missing data may often determine which characters and taxa are included in phylogenetic analyses. For example, researchers may exclude taxa lacking data for some genes or exclude a gene lacking data in some taxa. Yet, there may be very little evidence to support these decisions. In this paper, I review the effects of missing data on phylogenetic analyses. Recent simulations suggest that highly incomplete taxa can be accurately placed in phylogenies, as long as many characters have been sampled overall. Furthermore, adding incomplete taxa can dramatically improve results in some cases by subdividing misleading long branches. Adding characters with missing data can also improve accuracy, although there is a risk of long-branch attraction in some cases. Consideration of how missing data does (or does not) affect phylogenetic analyses may allow researchers to design studies that can reconstruct large phylogenies quickly, economically, and accurately.
                Bookmark

                Author and article information

                Journal
                Systematic Entomology
                Wiley-Blackwell
                03076970
                October 2009
                October 2009
                : 34
                : 4
                : 599-609
                Article
                10.1111/j.1365-3113.2009.00484.x
                cc033684-ddf0-4fa9-8c8d-6d0ac5f6c7b0
                © 2009

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article