91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perturbation Biology: Inferring Signaling Networks in Cellular Systems

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology.

          Author Summary

          Drugs that target specific effects of signaling proteins are promising agents for treating cancer. One of the many obstacles facing optimal drug design is inadequate quantitative understanding of the coordinated interactions between signaling proteins. De novo model inference of network or pathway models refers to the algorithmic construction of mathematical predictive models from experimental data without dependence on prior knowledge. De novo inference is difficult because of the prohibitively large number of possible sets of interactions that may or may not be consistent with observations. Our new method overcomes this difficulty by adapting a method from statistical physics, called Belief Propagation, which first calculates probabilistically the most likely interactions in the vast space of all possible solutions, then derives a set of individual, highly probable solutions in the form of executable models. In this paper, we test this method on artificial data and then apply it to model signaling pathways in a BRAF-mutant melanoma cancer cell line based on a large set of rich output measurements from a systematic set of perturbation experiments using drug combinations. Our results are in agreement with established biological knowledge, predict novel interactions, and predict efficacious drug targets that are specific to the experimental cell line and potentially to related tumors. The method has the potential, with sufficient systematic perturbation data, to model, de novo and quantitatively, the effects of hundreds of proteins on cellular responses, on a scale that is currently unreachable in diverse areas of cell biology. In a disease context, the method is applicable to the computational design of novel combination drug treatments.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.

          Somatic mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene are reportedly associated with sensitivity of lung cancers to gefitinib (Iressa), kinase inhibitor. In-frame deletions occur in exon 19, whereas point mutations occur frequently in codon 858 (exon 21). We found from sequencing the EGFR TK domain that 7 of 10 gefitinib-sensitive tumors had similar types of alterations; no mutations were found in eight gefitinib-refractory tumors (P = 0.004). Five of seven tumors sensitive to erlotinib (Tarceva), a related kinase inhibitor for which the clinically relevant target is undocumented, had analogous somatic mutations, as opposed to none of 10 erlotinib-refractory tumors (P = 0.003). Because most mutation-positive tumors were adenocarcinomas from patients who smoked <100 cigarettes in a lifetime ("never smokers"), we screened EGFR exons 2-28 in 15 adenocarcinomas resected from untreated never smokers. Seven tumors had TK domain mutations, in contrast to 4 of 81 non-small cell lung cancers resected from untreated former or current smokers (P = 0.0001). Immunoblotting of lysates from cells transiently transfected with various EGFR constructs demonstrated that, compared to wild-type protein, an exon 19 deletion mutant induced diminished levels of phosphotyrosine, whereas the phosphorylation at tyrosine 1092 of an exon 21 point mutant was inhibited at 10-fold lower concentrations of drug. Collectively, these data show that adenocarcinomas from never smokers comprise a distinct subset of lung cancers, frequently containing mutations within the TK domain of EGFR that are associated with gefitinib and erlotinib sensitivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation.

            Activating B-RAF(V600E) (also known as BRAF) kinase mutations occur in ∼7% of human malignancies and ∼60% of melanomas. Early clinical experience with a novel class I RAF-selective inhibitor, PLX4032, demonstrated an unprecedented 80% anti-tumour response rate among patients with B-RAF(V600E)-positive melanomas, but acquired drug resistance frequently develops after initial responses. Hypotheses for mechanisms of acquired resistance to B-RAF inhibition include secondary mutations in B-RAF(V600E), MAPK reactivation, and activation of alternative survival pathways. Here we show that acquired resistance to PLX4032 develops by mutually exclusive PDGFRβ (also known as PDGFRB) upregulation or N-RAS (also known as NRAS) mutations but not through secondary mutations in B-RAF(V600E). We used PLX4032-resistant sub-lines artificially derived from B-RAF(V600E)-positive melanoma cell lines and validated key findings in PLX4032-resistant tumours and tumour-matched, short-term cultures from clinical trial patients. Induction of PDGFRβ RNA, protein and tyrosine phosphorylation emerged as a dominant feature of acquired PLX4032 resistance in a subset of melanoma sub-lines, patient-derived biopsies and short-term cultures. PDGFRβ-upregulated tumour cells have low activated RAS levels and, when treated with PLX4032, do not reactivate the MAPK pathway significantly. In another subset, high levels of activated N-RAS resulting from mutations lead to significant MAPK pathway reactivation upon PLX4032 treatment. Knockdown of PDGFRβ or N-RAS reduced growth of the respective PLX4032-resistant subsets. Overexpression of PDGFRβ or N-RAS(Q61K) conferred PLX4032 resistance to PLX4032-sensitive parental cell lines. Importantly, MAPK reactivation predicts MEK inhibitor sensitivity. Thus, melanomas escape B-RAF(V600E) targeting not through secondary B-RAF(V600E) mutations but via receptor tyrosine kinase (RTK)-mediated activation of alternative survival pathway(s) or activated RAS-mediated reactivation of the MAPK pathway, suggesting additional therapeutic strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COT/MAP3K8 drives resistance to RAF inhibition through MAP kinase pathway reactivation

              Oncogenic mutations in the serine/threonine kinase B-RAF are found in 50–70% of malignant melanomas1. Pre-clinical studies have demonstrated that the B-RAFV600E mutation predicts a dependency on the mitogen activated protein kinase (MAPK) signaling cascade in melanoma1–5—an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials6–8. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance9–11. Identification of resistance mechanisms in a manner that elucidates alternative ‘druggable’ targets may inform effective long-term treatment strategies12. Here, we expressed ~600 kinase and kinase-related open reading frames (ORFs) in parallel to functionally interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (COT/TPL2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAFV600E cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signaling. Moreover, COT expression is associated with de novo resistance in B-RAFV600E cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibition. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                December 2013
                December 2013
                19 December 2013
                : 9
                : 12
                : e1003290
                Affiliations
                [1 ]Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [2 ]Tri-Institutional Program for Computational Biology and Medicine, Weill Cornell Medical College, New York, New York, United States of America
                [3 ]Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
                [4 ]Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [5 ]Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [6 ]Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [7 ]Laboratoire de Génomique des Microorganismes, Université Pierre et Marie Curie, Paris, France
                [8 ]Politecnico di Torino and Human Genetics Foundation, HuGeF, Torino, Italy
                Cancer Research UK Cambridge Research Institute, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EJM AK WW CS . Performed the experiments: WW MLM NPG XJ PK QH. Analyzed the data: EJM AK. Contributed reagents/materials/analysis tools: GM DBS CAP. Wrote the paper: EJM AK WW AP CS. Reverse Phase Protein Array Platform: GM. Cell lines: DBS CAP. Development and optimization of code: EJM AK AB AP. Statistical physics: MW AB AP RZ. Network modeling with synthetic data: EJM. Network modeling with biological data: AK.

                Article
                PCOMPBIOL-D-13-00694
                10.1371/journal.pcbi.1003290
                3868523
                24367245
                cc0665f2-a46f-497c-9f53-e50b8ca7232f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 October 2012
                : 26 August 2013
                Page count
                Pages: 23
                Funding
                The research was supported by a grant from the Integrative Cancer Biology Program (ICBP CCS U54CA148967), the Pathway Commons grant (NHGRI-U41HG006623), the Melanoma Research Alliance (236191), and the National Resource for Network Biology grant (NIGMS-GM103504). EJM and PK were partially supported by a training grant from the Tri-Institutional Program for Computational Biology and Medicine (National Institute of General Medical Sciences T32GM083937). RZ was supported by the European Research Council (ERC) grant n. 267915 .The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article