33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Missense and nonsense mutations in melanocortin 1 receptor ( MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals.

          Results

          The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F 1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour.

          Conclusion

          According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools

            The vast amount of protein sequence data now available, together with accumulating experimental knowledge of protein function, enables modeling of protein sequence and function evolution. The PANTHER database was designed to model evolutionary sequence–function relationships on a large scale. There are a number of applications for these data, and we have implemented web services that address three of them. The first is a protein classification service. Proteins can be classified, using only their amino acid sequences, to evolutionary groups at both the family and subfamily levels. Specific subfamilies, and often families, are further classified when possible according to their functions, including molecular function and the biological processes and pathways they participate in. The second application, then, is an expression data analysis service, where functional classification information can help find biological patterns in the data obtained from genome-wide experiments. The third application is a coding single-nucleotide polymorphism scoring service. In this case, information about evolutionarily related proteins is used to assess the likelihood of a deleterious effect on protein function arising from a single substitution at a specific amino acid position in the protein. All three web services are available at .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans.

              Melanin pigmentation protects the skin from the damaging effects of ultraviolet radiation (UVR). There are two types of melanin, the red phaeomelanin and the black eumelanin, both of which are present in human skin. Eumelanin is photoprotective whereas phaeomelanin, because of its potential to generate free radicals in response to UVR, may contribute to UV-induced skin damage. Individuals with red hair have a predominance of phaeomelain in hair and skin and/or a reduced ability to produce eumelanin, which may explain why they fail to tan and are at risk from UVR. In mammals the relative proportions of phaeomelanin and eumelanin are regulated by melanocyte stimulating hormone (MSH), which acts via its receptor (MC1R), on melanocytes, to increase the synthesis of eumelanin and the product of the agouti locus which antagonises this action. In mice, mutations at either the MC1R gene or agouti affect the pattern of melanogenesis resulting in changes in coat colour. We now report the presence of MC1R gene sequence variants in humans. These were found in over 80% of individuals with red hair and/or fair skin that tans poorly but in fewer than 20% of individuals with brown or black hair and in less than 4% of those who showed a good tanning response. Our findings suggest that in humans, as in other mammals, the MC1R is a control point in the regulation of pigmentation phenotype and, more importantly, that variations in this protein are associated with a poor tanning response.
                Bookmark

                Author and article information

                Journal
                BMC Genet
                BMC Genetics
                BioMed Central
                1471-2156
                2009
                25 August 2009
                : 10
                : 47
                Affiliations
                [1 ]DIPROVAL, Sezione di Allevamenti Zootecnici, University of Bologna, Via F.lli Rosselli 107, 42100 Reggio Emilia, Italy
                [2 ]Dep. S.En.Fi.Mi.Zo., Sezione di Produzioni Animali, University of Palermo, Viale delle Scienze – Parco d'Orleans, 90128 Palermo, Italy
                [3 ]ANAFI – Italian Holstein Association, Via Bergamo 292, 26100 Cremona, Italy
                Article
                1471-2156-10-47
                10.1186/1471-2156-10-47
                2748843
                19706191
                cc0e63b4-0b84-4bde-8091-2458eea71410
                Copyright © 2009 Fontanesi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 November 2008
                : 25 August 2009
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article