8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extraction of force-chain network architecture in granular materials using community detection

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Finding and evaluating community structure in networks.

          We propose and study a set of algorithms for discovering community structure in networks-natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using any one of a number of possible "betweenness" measures, and second, these measures are, crucially, recalculated after each removal. We also propose a measure for the strength of the community structure found by our algorithms, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering community structure in both computer-generated and real-world network data, and show how they can be used to shed light on the sometimes dauntingly complex structure of networked systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Finding community structure in networks using the eigenvectors of matrices.

            We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as "modularity" over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Force fluctuations in bead packs.

              Experimental observations and numerical simulations of the large force inhomogeneities present in stationary bead packs are presented. Forces much larger than the mean occurred but were exponentially rare. An exactly soluble model reproduced many aspects of the experiments and simulations. In this model, the fluctuations in the force distribution arise because of variations in the contact angles and the constraints imposed by the force balance on each bead in the pile.
                Bookmark

                Author and article information

                Journal
                SMOABF
                Soft Matter
                Soft Matter
                Royal Society of Chemistry (RSC)
                1744-683X
                1744-6848
                2015
                2015
                : 11
                : 14
                : 2731-2744
                Article
                10.1039/C4SM01821D
                cc13659f-9439-4b5d-8e75-fa5a25fabc16
                © 2015
                History

                Comments

                Comment on this article