69
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nuclear Receptor DHR4 Controls the Timing of Steroid Hormone Pulses During Drosophila Development

      research-article
      , , *
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pulses of the steroid hormone ecdysone are turned off periodically through nucleo-cytoplasmic oscillations of a nuclear receptor that counteracts the neuropeptide signaling pathway responsible for activating hormone pulses in Drosophila melanogaster.

          Abstract

          In insects, precisely timed periodic pulses of the molting hormone ecdysone control major developmental transitions such as molts and metamorphosis. The synthesis and release of ecdysone, a steroid hormone, is itself controlled by PTTH (prothoracicotopic hormone). PTTH transcript levels oscillate with an 8 h rhythm, but its significance regarding the timing of ecdysone pulses is unclear. PTTH acts on its target tissue, the prothoracic gland (PG), by activating the Ras/Raf/ERK pathway through its receptor Torso, however direct targets of this pathway have yet to be identified. Here, we demonstrate that Drosophila Hormone Receptor 4 ( DHR4), a nuclear receptor, is a key target of the PTTH pathway and establishes temporal boundaries by terminating ecdysone pulses. Specifically, we show that DHR4 oscillates between the nucleus and cytoplasm of PG cells, and that the protein is absent from PG nuclei at developmental times when low titer ecdysone pulses occur. This oscillatory behavior is blocked when PTTH or torso function is abolished, resulting in nuclear accumulation of DHR4, while hyperactivating the PTTH pathway results in cytoplasmic retention of the protein. Increasing DHR4 levels in the PG can delay or arrest development. In contrast, reducing DHR4 function in the PG triggers accelerated development, which is caused by precocious ecdysone signaling due to a failure to repress ecdysone pulses. Finally, we show that DHR4 negatively regulates the expression of a hitherto uncharacterized cytochrome P450 gene, Cyp6t3. Disruption of Cyp6t3 function causes low ecdysteroid titers and results in heterochronic phenotypes and molting defects, indicating a novel role in the ecdysone biosynthesis pathway. We propose a model whereby nuclear DHR4 controls the duration of ecdysone pulses by negatively regulating ecdysone biosynthesis through repression of Cyp6t3, and that this repressive function is temporarily overturned via the PTTH pathway by removing DHR4 from the nuclear compartment.

          Author Summary

          Steroid hormones play fundamental roles in development and disease. They are often released as pulses, thereby orchestrating multiple physiological and developmental changes throughout the body. Hormone pulses must be regulated in a way so that they have a defined beginning, peak, and end. In Drosophila, pulses of the steroid hormone ecdysone govern all major developmental transitions, such as the molts or the transformation of a larva to a pupa. While we have a relatively good understanding of how an ecdysone pulse is initiated, little is known about how hormone production is turned off. In this study, we identify a critical regulator of this process, the nuclear receptor DHR4. When we interfere with the function of DHR4 specifically in the ecdysone-producing gland, we find that larvae develop much faster than normal, and that this is caused by the inability to turn off ecdysone production. We show that DHR4 oscillates between cytoplasm and nucleus of ecdysone-producing cells under the control of a neuropeptide that regulates ecdysone production. When the neuropeptide pathway is inactive, DHR4 enters the nucleus and represses another gene, Cyp6t3, for which we show a novel role in the production of ecdysone.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic transformation of Drosophila with transposable element vectors.

          Exogenous DNA sequences were introduced into the Drosophila germ line. A rosy transposon (ry1), constructed by inserting a chromosomal DNA fragment containing the wild-type rosy gene into a P transposable element, transformed germ line cells in 20 to 50 percent of the injected rosy mutant embryos. Transformants contained one or two copies of chromosomally integrated, intact ry1 that were stably inherited in subsequent generations. These transformed flies had wild-type eye color indicating that the visible genetic defect in the host strain could be fully and permanently corrected by the transferred gene. To demonstrate the generality of this approach, a DNA segment that does not confer a recognizable phenotype on recipients was also transferred into germ line chromosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transposition of cloned P elements into Drosophila germ line chromosomes.

            Recombinant DNA carrying the 3-kilobase transposable element was injected into Drosophila embryos of a strain that lacked such elements. Under optimum conditions, half of the surviving embryos showed evidence of P element-induced mutations in a fraction of their progeny. Direct analysis of the DNA of strains derived from such flies showed them to contain from one to five intact 3-kilobase P elements located at a wide variety of chromosomal sites. DNA sequences located outside the P element on the injected DNA were not transferred. Thus P elements can efficiently and selectively transpose from extrachromosomal DNA to the DNA of germ line chromosomes in Drosophila embryos. These observations provide the basis for efficient DNA-mediated gene transfer in Drosophila.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How flies get their size: genetics meets physiology.

              Body size affects important fitness variables such as mate selection, predation and tolerance to heat, cold and starvation. It is therefore subject to intense evolutionary selection. Recent genetic and physiological studies in insects are providing predictions as to which gene systems are likely to be targeted in selecting for changes in body size. These studies highlight genes and pathways that also control size in mammals: insects use insulin-like growth factor (IGF) and Target of rapamycin (TOR) kinase signalling to coordinate nutrition with cell growth, and steroid and neuropeptide hormones to terminate feeding after a genetically encoded target weight is achieved. However, we still understand little about how size is actually sensed, or how organ-intrinsic size controls interface with whole-body physiology.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                September 2011
                September 2011
                27 September 2011
                : 9
                : 9
                : e1001160
                Affiliations
                [1]Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
                Stanford University, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: KKJ QO. Performed the experiments: QO AM KKJ. Analyzed the data: QO AM KKJ. Contributed reagents/materials/analysis tools: QO AM KKJ. Wrote the paper: KKJ.

                Article
                PBIOLOGY-D-10-01372
                10.1371/journal.pbio.1001160
                3181225
                21980261
                cc1ebfef-cc3d-4ffa-bb12-0269971772e9
                Ou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 December 2010
                : 15 August 2011
                Page count
                Pages: 19
                Categories
                Research Article
                Biology
                Biochemistry
                Neurochemistry
                Neurochemicals
                Neuropeptides
                Developmental Biology
                Molecular Development
                Signaling
                Model Organisms
                Animal Models
                Drosophila Melanogaster
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                ERK signaling cascade
                Nuclear Receptor Signaling

                Life sciences
                Life sciences

                Comments

                Comment on this article