15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The improvement of bioactive secondary metabolites accumulation in Rumex gmelini Turcz through co-culture with endophytic fungi

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aspergillus sp., Fusarium sp., and Ramularia sp. were endophytic fungi isolated from Rumex gmelini Turcz (RGT), all of these three strains could produce some similar bioactive secondary metabolites of their host. However the ability to produce active components degraded significantly after cultured these fungi alone for a long time, and were difficult to recover. In order to obtain more bioactive secondary metabolites, the co-culture of tissue culture seedlings of RGT and its endophytic fungi were established respectively, and RGT seedling was selected as producer. Among these fungi, Aspergillus sp. showed the most significant enhancement on bioactive components accumulation in RGT seedlings. When inoculated Aspergillus sp. spores into media of RGT seedlings that had taken root for 20 d, and made spore concentration in co-culture medium was 1 × 10 4 mL –1, after co-cultured for 12 d, the yield of chrysophaein, resveratrol, chrysophanol, emodin and physcion were 3.52-, 3.70-, 3.60-, 4.25-, 3.85-fold of the control group. The extreme value of musizin yield was 0.289 mg, which was not detected in the control groups. The results indicated that co-culture with endophytic fungi could significantly enhance bioactive secondary metabolites production of RGT seedlings.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

          Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production.

            Camptothecin (CPT), the third largest anticancer drug, is produced mainly by Camptotheca acuminata and Nothapodytes foetida. CPT itself is the starting material for clinical CPT-type drugs, but the plant-derived CPT cannot support the heavy demand from the global market. Research efforts have been made to identify novel sources for CPT. In this study, three CPT-producing endophytic fungi, Aspergillus sp. LY341, Aspergillus sp. LY355, and Trichoderma atroviride LY357, were isolated and identified from C. acuminata. Most CPT produced by these fungi was found in the fermentation broth, and their corresponding CPT yields were 7.93, 42.92, and 197.82 μg l(-1), respectively. The CPT-producing capability of LY341 and LY355 was completely lost after repeat subculturing. A substantial decrease of CPT production was also observed in the second generation of LY357. However, a stable and sustainable production of CPT was found from the second generation through the eighth generation of LY357. The fermentation medium, time, pH, temperature, and agitation rate were optimized for CPT production. Methyl jasmonate and XAD16 were proven to be an optimum elicitor and adsorbent resin, respectively, in view of that CPT yield was increased 3.4- and 11-fold through their use. A 50- to 75-fold increase of CPT yield was obtained when the optimized fermentation conditions, elicitor, and adsorbent resin were combined and applied to the culture of the seventh and eighth generations of LY357, and the highest CPT yield was 142.15 μg l(-1). The CPT-producing T. atroviride LY357 paves a potential to uncover the mysteries of CPT biosynthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens.

              Through bioassay-guided fractionation, the EtOAc extract of a culture broth of the endophytic fungus Phoma species ZJWCF006 in Arisaema erubescens afforded a new α-tetralone derivative, (3S)-3,6,7-trihydroxy-α-tetralone (1), together with cercosporamide (2), β-sitosterol (3), and trichodermin (4). The structures of compounds were established on the basis of spectroscopic analyses. Compounds 1, 2, and 3 were obtained from Phoma species for the first time. Additionally, the compounds were subjected to bioactivity assays, including antimicrobial activity, against four plant pathogenic fungi (Fusarium oxysporium, Rhizoctonia solani, Colletotrichum gloeosporioides, and Magnaporthe oryzae) and two plant pathogenic bacteria (Xanthomonas campestris and Xanthomonas oryzae), as well as in vitro antitumor activities against HT-29, SMMC-772, MCF-7, HL-60, MGC80-3, and P388 cell lines. Compound 1 showed growth inhibition against F. oxysporium and R. solani with EC₅₀ values of 413.22 and 48.5 μg/mL, respectively. Additionally, compound 1 showed no cytotoxicity, whereas compound 2 exhibited cytotoxic activity against the six tumor cell lines tested, with IC₅₀ values of 9.3 ± 2.8, 27.87 ± 1.78, 48.79 ± 2.56, 37.57 ± 1.65, 27.83 ± 0.48, and 30.37 ± 0.28 μM, respectively. We conclude that endophytic Phoma are promising sources of natural bioactive and novel metabolites.
                Bookmark

                Author and article information

                Contributors
                Journal
                Braz J Microbiol
                Braz. J. Microbiol
                Brazilian Journal of Microbiology
                Elsevier
                1517-8382
                1678-4405
                05 November 2017
                Apr-Jun 2018
                05 November 2017
                : 49
                : 2
                : 362-369
                Affiliations
                [a ]Heilongjiang University of Chinese Medicine, Pharmacy College, Harbin, China
                [b ]The First Affiliated Hospital of Guangdong Pharmaceutical University, Department of Pharmacy, Guangzhou, China
                Author notes
                [* ] Corresponding author. goodluckdd81@ 123456126.com
                Article
                S1517-8382(16)31007-3
                10.1016/j.bjm.2017.04.013
                5913822
                29254631
                cc32fe24-9248-482f-a4d9-ade280983c5a
                © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 13 October 2016
                : 19 April 2017
                Categories
                Research Paper

                rumex gmelini turcz (rgt),endophytic fungi,aspergillus sp.,seedlings,bioactive secondary metabolites

                Comments

                Comment on this article