6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Preload-adjusted maximal power of right ventricle: contribution of end-systolic P-V relation intercept.

      American Journal of Physiology - Heart and Circulatory Physiology
      Animals, Blood Pressure, physiology, Cardiac Volume, Dogs, Models, Cardiovascular, Pulmonary Wedge Pressure, Stroke Volume, Systole, Ventricular Function, Right, Ventricular Pressure

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To assess whether preload-adjusted maximal power (PAMP), which is calculated as W(max)/V (where W(max) is maximal power and V(ed) is end-diastolic volume with beta = 2) is an index of right ventricular (RV) contractility, we measured RV pressure (P) and volume (V) and pulmonary artery pressure and flow in 10 dogs at baseline and after inotropic stimulation. PAMP was derived from steady-state data, whereas the slope (E(es)) and intercept (V(d)) of the end-systolic P-V relationship were derived from data obtained during vena caval occlusion. Inotropic stimulation increased E(es) (from 0.96 +/- 0.25 to 1.62 +/- 0.28 mmHg/ml; P < 0.001) and V(d) (from -3.0 +/- 17.2 to 12.4 +/- 10.8 ml; P < 0.05) but not PAMP (from 0.24 +/- 0.10 to 0.36 +/- 0.22 mW/ml(2); P = 0.09). We found a strong relationship between the optimal beta-factor for preload adjustment and V(d). A corrected PAMP, PAMP(c) = W(max)/(V(ed) - V(d))(2), which incorporated the V(d) dependency, was sensitive to the inotropic changes (from 0.23 +/- 0.12 to 0.54 +/- 0.17 mW/ml(2); P < 0.001) with a good correlation with E(es) (r = 0.88; P < 0.001).

          Related collections

          Author and article information

          Comments

          Comment on this article