0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Umbilical cord serum concentrations of perfluorooctane sulfonate, perfluorooctanoic acid, and the body mass index changes from birth to 5 1/2 years of age

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prenatal exposure to perfluoroalkyl substances (PFAS) has been reported to affect body weight from birth to childhood, but the results remain inconclusive. We investigated whether umbilical cord blood concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are associated with children’s risk trajectory for obesity. 600 children were randomly selected from the Hamamatsu Birth Cohort for Mothers and Children (HBC study) and their umbilical cord serum PFAS concentrations were quantified. Participants underwent BMI measurements at ages 1, 4, 10, 18, 24, 32, 40, 50, and 66 months. Growth curve modeling with random intercept was performed with standardized BMI as outcome variable. PFOS was negatively associated with standardized BMI (β =  − 0.34; p = 0.01), with a marginally significant interaction with the child’s age (β = 0.0038; p = 0.08). PFOA was negatively associated with standardized BMI (β =  − 0.26, 95% CI − 0.51, 0; p = 0.05), with a significant interaction with the child’s age (β = 0.005; p = 0.01). Stratified analysis by sex revealed that these effects were significant only among girls. Prenatal exposure to PFAS initially was associated with lower standardized BMI during infancy, but this effect dissipated over time and reversed in direction during later childhood. The effects of prenatal PFAS on higher standardized BMI is stronger in girls.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins

          The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers. Integr Environ Assess Manag 2011;7:513–541. © 2011 SETAC
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Relative Performance of Full Information Maximum Likelihood Estimation for Missing Data in Structural Equation Models

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Half-Life of Serum Elimination of Perfluorooctanesulfonate,Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers

              Background The presence of perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHS), and perfluorooctanoate (PFOA) has been reported in humans and wildlife. Pharmacokinetic differences have been observed in laboratory animals. Objective The purpose of this observational study was to estimate the elimination half-life of PFOS, PFHS, and PFOA from human serum. Methods Twenty-six (24 male, 2 female) retired fluorochemical production workers, with no additional occupational exposure, had periodic blood samples collected over 5 years, with serum stored in plastic vials at −80°C. At the end of the study, we used HPLC-mass spectrometry to analyze the samples, with quantification based on the ion ratios for PFOS and PFHS and the internal standard 18O2-PFOS. For PFOA, quantitation was based on the internal standard 13C2-PFOA. Results The arithmetic mean initial serum concentrations were as follows: PFOS, 799 ng/mL (range, 145–3,490); PFHS, 290 ng/mL (range, 16–1,295); and PFOA, 691 ng/mL (range, 72–5,100). For each of the 26 subjects, the elimination appeared linear on a semi-log plot of concentration versus time; therefore, we used a first-order model for estimation. The arithmetic and geometric mean half-lives of serum elimination, respectively, were 5.4 years [95% confidence interval (CI), 3.9–6.9] and 4.8 years (95% CI, 4.0–5.8) for PFOS; 8.5 years (95% CI, 6.4–10.6) and 7.3 years (95% CI, 5.8–9.2) for PFHS; and 3.8 years (95% CI, 3.1–4.4) and 3.5 years (95% CI, 3.0–4.1) for PFOA. Conclusions Based on these data, humans appear to have a long half-life of serum elimination of PFOS, PFHS, and PFOA. Differences in species-specific pharmacokinetics may be due, in part, to a saturable renal resorption process.
                Bookmark

                Author and article information

                Contributors
                Hotaka1001@gmail.com
                tsuchiya@hama-med.ac.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 October 2021
                5 October 2021
                2021
                : 11
                : 19789
                Affiliations
                [1 ]GRID grid.256642.1, ISNI 0000 0000 9269 4097, Department of Pediatrics, , Gunma University Graduate School of Medicine, ; Maebashi, Japan
                [2 ]GRID grid.505613.4, Research Center for Child Mental Development, , Hamamatsu University School of Medicine, ; Hamamatsu, Japan
                [3 ]GRID grid.505613.4, United Graduate School of Child Development, , Hamamatsu University School of Medicine, ; Hamamatsu, Japan
                [4 ]GRID grid.212340.6, ISNI 0000000122985718, The City University of New York, ; New York, NY USA
                [5 ]GRID grid.59734.3c, ISNI 0000 0001 0670 2351, The Icahn School of Medicine at Mount Sinai, ; New York, NY USA
                [6 ]GRID grid.505613.4, Department of Obstetrics and Gynaecology, , Hamamatsu University School of Medicine, ; Hamamatsu, Japan
                Article
                99174
                10.1038/s41598-021-99174-3
                8492859
                34611219
                cc7ecb48-9c23-41a4-8450-78ac8f5395ad
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 April 2021
                : 20 September 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: JP16H05374 and 19H03582
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                environmental chemistry,intrauterine growth,obesity,paediatric research
                Uncategorized
                environmental chemistry, intrauterine growth, obesity, paediatric research

                Comments

                Comment on this article