Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      STIM and Orai: dynamic intermembrane coupling to control cellular calcium signals.

      The Journal of Biological Chemistry

      Animals, Calcium Channels, metabolism, physiology, Calcium Signaling, Humans, Membrane Proteins, Models, Biological, Neoplasm Proteins

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ca(2+) signals controlling a vast array of cell functions involve both Ca(2+) store release and external Ca(2+) entry. These two events are coordinated through a dynamic intermembrane coupling between two distinct membrane proteins, STIM and Orai. STIM proteins are endoplasmic reticulum (ER) luminal Ca(2+) sensors that undergo a profound redistribution into discrete junctional ER domains closely juxtaposed with the plasma membrane (PM). Orai proteins are PM Ca(2+) channels that migrate and become tethered by STIM within the ER-PM junctions, where they mediate exceedingly selective Ca(2+) entry. We describe a new understanding of the nature of the proteins and how they function to mediate this remarkable intermembrane signaling process controlling Ca(2+) signals.

          Related collections

          Author and article information

          Journal
          19473984
          2755655
          10.1074/jbc.R109.018655

          Comments

          Comment on this article