2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dendritic silver self-assembly in molten-carbonate membranes for efficient carbon dioxide capture

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Self-assembling Ag dendritic networks provide ultrahigh CO 2 permeability, whilst reducing membrane-volume-normalised Ag demand by an order of magnitude.

          Abstract

          Membranes for CO 2 capture should offer high permeant fluxes to keep membrane surface area small and material requirements low. Ag-supported, dual-phase, molten-carbonate membranes routinely demonstrate the highest CO 2 fluxes in this class of membrane. However, using Ag as a support incurs high cost. Here, the non-equilibrium conditions of permeation were exploited to stimulate the self-assembly of a percolating, dendritic network of Ag from the molten carbonate. Multiple membrane support geometries and Ag incorporation methods were employed, demonstrating the generality of the approach, while X-ray micro-computed tomography confirmed that CO 2 and O 2 permeation stimulated self-assembly. We report the highest flux of Ag-supported molten-salt membranes to date (1.25 ml min −1 cm −2 at 650 °C) and ultrahigh permeability (9.4 × 10 −11 mol m −1 s −1 Pa −1), surpassing the permeability requirement for economically-competitive post-combustion CO 2 capture, all whilst reducing the membrane-volume-normalised demand for Ag by one order of magnitude.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          The upper bound revisited

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Carbon capture and storage (CCS): the way forward

            Carbon capture and storage (CCS) is vital to climate change mitigation, and has application across the economy, in addition to facilitating atmospheric carbon dioxide removal resulting in emissions offsets and net negative emissions. This contribution reviews the state-of-the-art and identifies key challenges which must be overcome in order to pave the way for its large-scale deployment. Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO 2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO 2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amine scrubbing for CO2 capture.

              Amine scrubbing has been used to separate carbon dioxide (CO2) from natural gas and hydrogen since 1930. It is a robust technology and is ready to be tested and used on a larger scale for CO2 capture from coal-fired power plants. The minimum work requirement to separate CO2 from coal-fired flue gas and compress CO2 to 150 bar is 0.11 megawatt-hours per metric ton of CO2. Process and solvent improvements should reduce the energy consumption to 0.2 megawatt-hour per ton of CO2. Other advanced technologies will not provide energy-efficient or timely solutions to CO2 emission from conventional coal-fired power plants.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                June 18 2020
                2020
                : 13
                : 6
                : 1766-1775
                Affiliations
                [1 ]School of Engineering
                [2 ]Newcastle University
                [3 ]Merz Court
                [4 ]Newcastle Upon Tyne NE1 7RU
                [5 ]UK
                [6 ]Electrochemical Innovation Lab
                [7 ]Department of Chemical Engineering
                [8 ]UCL
                [9 ]London WC1E 7JE
                Article
                10.1039/C9EE03497H
                cc8b7ebb-4da4-41ef-9ee9-71d1a6f002af
                © 2020

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article