23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Does the microbiota play a role in the pathogenesis of autoimmune diseases?

      , , ,
      Gut
      BMJ

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The microbiota of the human metaorganism is not a mere bystander. These microbes have coevolved with us and are pivotal to normal development and homoeostasis. Dysbiosis of the GI microbiota is associated with many disease susceptibilities, including obesity, malignancy, liver disease and GI pathology such as IBD. It is clear that there is direct and indirect crosstalk between this microbial community and host immune response. However, the precise mechanism of this microbial influence in disease pathogenesis remains elusive and is now a major research focus. There is emerging literature on the role of the microbiota in the pathogenesis of autoimmune disease, with clear and increasing evidence that changes in the microbiota are associated with some of these diseases. Examples include type 1 diabetes, coeliac disease and rheumatoid arthritis, and these contribute significantly to global morbidity and mortality. Understanding the role of the microbiota in autoimmune diseases may offer novel insight into factors that initiate and drive disease progression, stratify patient risk for complications and ultimately deliver new therapeutic strategies. This review summarises the current status on the role of the microbiota in autoimmune diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structure, Function and Diversity of the Healthy Human Microbiome

          Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin, and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics, and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analyzed the largest cohort and set of distinct, clinically relevant body habitats to date. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families, and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology, and translational applications of the human microbiome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human gut microbiome viewed across age and geography

            Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ between human populations when viewed from the perspective of component microbial lineages, encoded metabolic functions, stage of postnatal development, and environmental exposures, we characterized bacterial species present in fecal samples obtained from 531 individuals representing healthy Amerindians from the Amazonas of Venezuela, residents of rural Malawian communities, and inhabitants of USA metropolitan areas, as well as the gene content of 110 of their microbiomes. This cohort encompassed infants, children, teenagers and adults, parents and offspring, and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the representation of genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial species assemblages and functional gene repertoires were noted between individuals residing in the USA compared to the other two countries. These distinctive features are evident in early infancy as well as adulthood. In addition, the similarity of fecal microbiomes among family members extends across cultures. These findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations, and the impact of Westernization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diversity, stability and resilience of the human gut microbiota.

              Trillions of microbes inhabit the human intestine, forming a complex ecological community that influences normal physiology and susceptibility to disease through its collective metabolic activities and host interactions. Understanding the factors that underlie changes in the composition and function of the gut microbiota will aid in the design of therapies that target it. This goal is formidable. The gut microbiota is immensely diverse, varies between individuals and can fluctuate over time - especially during disease and early development. Viewing the microbiota from an ecological perspective could provide insight into how to promote health by targeting this microbial community in clinical treatments.
                Bookmark

                Author and article information

                Journal
                Gut
                Gut
                BMJ
                0017-5749
                1468-3288
                January 08 2015
                February 2015
                February 2015
                November 21 2014
                : 64
                : 2
                : 332-341
                Article
                10.1136/gutjnl-2014-308514
                6288812
                25416067
                cc8c46d2-0fca-4451-814e-6abe628bf26a
                © 2014
                History

                Comments

                Comment on this article