21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive Identification and Modified-Site Mapping of S-Nitrosylated Targets in Prostate Epithelial Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Although overexpression of nitric oxide synthases (NOSs) has been found associated with prostate diseases, the underlying mechanisms for NOS -related prostatic diseases remain unclear. One proposed mechanism is related to the S-nitrosylation of key regulatory proteins in cell-signaling pathways due to elevated levels of NO in the prostate. Thus, our primary objective was to identify S-nitrosylated targets in an immortalized normal prostate epithelial cell line, NPrEC.

          Methodology/Principal Findings

          We treated NPrEC with nitroso-cysteine and used the biotin switch technique followed by gel-based separation and mass spectrometry protein identification (using the LTQ-Orbitrap) to discover S-nitrosylated (SNO) proteins in the treated cells. In parallel, we adapted a peptide pull-down methodology to locate the site(s) of S-nitrosylation on the protein SNO targets identified by the first technique. This combined approach identified 116 SNO proteins and determined the sites of modification for 82 of them. Over 60% of these proteins belong to four functional groups: cell structure/cell motility/protein trafficking, protein folding/protein response/protein assembly, mRNA splicing/processing/transcriptional regulation, and metabolism. Western blot analysis validated a subset of targets related to disease development (proliferating cell nuclear antigen, maspin, integrin β4, α-catenin, karyopherin [importin] β1, and elongation factor 1A1). We analyzed the SNO sequences for their primary and secondary structures, solvent accessibility, and three-dimensional structural context. We found that about 80% of the SNO sites that can be mapped into resolved structures are buried, of which approximately half have charged amino acids in their three-dimensional neighborhood, and the other half residing within primarily hydrophobic pockets.

          Conclusions/Significance

          We here identified 116 potential SNO targets and mapped their putative SNO sites in NPrEC. Elucidation of how this post-translational modification alters the function of these proteins should shed light on the role of NO in prostate pathologies. To our knowledge, this is the first report identifying SNO targets in prostate epithelial cells.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Cell transformation by the superoxide-generating oxidase Mox1.

          Reactive oxygen species (ROS) generated in some non-phagocytic cells are implicated in mitogenic signalling and cancer. Many cancer cells show increased production of ROS, and normal cells exposed to hydrogen peroxide or superoxide show increased proliferation and express growth-related genes. ROS are generated in response to growth factors, and may affect cell growth, for example in vascular smooth-muscle cells. Increased ROS in Ras-transformed fibroblasts correlates with increased mitogenic rate. Here we describe the cloning of mox1, which encodes a homologue of the catalytic subunit of the superoxide-generating NADPH oxidase of phagocytes, gp91phox. mox1 messenger RNA is expressed in colon, prostate, uterus and vascular smooth muscle, but not in peripheral blood leukocytes. In smooth-muscle cells, platelet-derived growth factor induces mox1 mRNA production, while antisense mox1 mRNA decreases superoxide generation and serum-stimulated growth. Overexpression of mox1 in NIH3T3 cells increases superoxide generation and cell growth. Cells expressing mox1 have a transformed appearance, show anchorage-independent growth and produce tumours in athymic mice. These data link ROS production by Mox1 to growth control in non-phagocytic cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of HIF-1alpha stability through S-nitrosylation.

            Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional factor. Under normal oxygen tension, HIF-1 activity is usually suppressed due to the rapid, oxygen-dependent degradation of one of its two subunits, HIF-1alpha. Here we report that normoxic HIF-1 activity can be upregulated through NO-mediated S-nitrosylation and stabilization of HIF-1alpha. In murine tumors, exposure to ionizing radiation stimulated the generation of NO in tumor-associated macrophages. As a result, the HIF-1alpha protein is S-nitrosylated at Cys533 (through "biotin switch" assay) in the oxygen-dependent degradation domain, which prevents its destruction. Importantly, this mechanism appears to be independent of the prolylhydroxylase-based pathway that is involved in oxygen-dependent regulation of HIF-1alpha. Selective disruption of this S-nitrosylation significantly attenuated both radiation-induced and macrophage-induced activation of HIF-1alpha. This interaction between NO and HIF-1 sheds new light on their involvement in tumor response to treatment as well as mammalian inflammation process in general.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Karyopherin proteins, Crm1 and Karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation.

              The Karyopherin proteins are involved in nucleo-cytoplasmic trafficking and are critical for protein and RNA subcellular localization. Recent studies suggest they are important in nuclear envelope component assembly, mitosis and replication. Since these are all critical cellular functions, alterations in the expression of the Karyopherins may have an impact on the biology of cancer cells. In this study, we examined the expression of the Karyopherins, Crm1, Karyopherin beta1 (Kpnbeta1) and Karyopherin alpha2 (Kpnalpha2), in cervical tissue and cell lines. The functional significance of these proteins to cancer cells was investigated using individual siRNAs to inhibit their expression. Microarrays, quantitative RT-PCR and immunofluorescence revealed significantly higher expression of Crm1, Kpnbeta1 and Kpnalpha2 in cervical cancer compared to normal tissue. Expression levels were similarly elevated in cervical cancer cell lines compared to normal cells, and in transformed epithelial and fibroblast cells. Inhibition of Crm1 and Kpnbeta1 in cancer cells significantly reduced cell proliferation, while Kpnalpha2 inhibition had no effect. Noncancer cells were unaffected by the inhibition of Crm1 and Kpnbeta1. The reduction in proliferation of cancer cells was associated with an increase in a subG1 population by cell cycle analysis and Caspase-3/7 assays revealed increased apoptosis. Crm1 and Kpnbeta1 siRNA-induced apoptosis was accompanied by an increase in the levels of growth inhibitory proteins, p53, p27, p21 and p18. Our results demonstrate that Crm1, Kpnbeta1 and Kpnalpha2 are overexpressed in cervical cancer and that inhibiting the expression of Crm1 and Kpnbeta1, not Kpnalpha2, induces cancer cell death, making Crm1 and Kpnbeta1 promising candidates as both biomarkers and potential anticancer therapeutic targets.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                5 February 2010
                : 5
                : 2
                : e9075
                Affiliations
                [1 ]Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
                [2 ]Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
                [3 ]Cincinnati Cancer Consortium, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
                University of Minnesota, United States of America
                Author notes

                Conceived and designed the experiments: YWL SmH. Performed the experiments: YWL YY JI CVSB. Analyzed the data: YWL YY JI CVSB JM SMH. Contributed reagents/materials/analysis tools: JM. Wrote the paper: YWL JI JM SMH.

                Article
                09-PONE-RA-12849R1
                10.1371/journal.pone.0009075
                2816712
                20140087
                cc8ceccb-c39b-4489-8287-e32b674bd8e6
                Lam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 September 2009
                : 17 January 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Biochemistry/Protein Chemistry
                Cell Biology/Chemical Biology of the Cell
                Chemical Biology/Protein Chemistry and Proteomics
                Computational Biology/Sequence Motif Analysis
                Oncology/Prostate Cancer
                Urology/Prostate Cancer

                Uncategorized
                Uncategorized

                Comments

                Comment on this article