142
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An ABC Transporter Mutation Is Correlated with Insect Resistance to Bacillus thuringiensis Cry1Ac Toxin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt–expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

          Author Summary

          Crystal toxin proteins from Bacillus thuringiensis (Bt) make ideal bioinsecticides because of their high potency against certain insects and lack of activity against most other species. Transgenic cotton and maize expressing pore-forming Cry1A Bt-toxins are now widely used in agriculture, enabling substantial reductions in the use of chemical insecticides. However this has greatly increased the selection pressure in pest populations for toxin resistance. Preventing or delaying the development of this resistance is a high priority, to avoid a replay of the onset of insecticide resistance brought on by dependency on chemical pesticides. Because the molecular details of Bt mode of action are still not fully understood, insect strains collected from the field and selected to high levels of resistance in the laboratory are useful in discovering the obstacles the toxin must overcome before it finally forms the pore and kills the insect. We used a genetic approach to explore a poorly understood step in the toxin mode of action, which is blocked in an extremely resistant strain of an important cotton pest. As well as providing the tools to diagnose this type of resistance when it appears in the field, this discovery suggests factors that may counteract its eventual spread.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Biochemistry and genetics of insect resistance to Bacillus thuringiensis.

          Bacillus thuringiensis (Bt) is a valuable source of insecticidal proteins for use in conventional sprayable formulations and in transgenic crops, and it is the most promising alternative to synthetic insecticides. However, evolution of resistance in insect populations is a serious threat to this technology. So far, only one insect species has evolved significant levels of resistance in the field, but laboratory selection experiments have shown the high potential of other species to evolve resistance against Bt. We have reviewed the current knowledge on the biochemical mechanisms and genetics of resistance to Bt products and insecticidal crystal proteins. The understanding of the biochemical and genetic basis of resistance to Bt can help design appropriate management tactics to delay or reduce the evolution of resistance in insect populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome sequence of silkworm, Bombyx mori.

            We performed threefold shotgun sequencing of the silkworm (Bombyx mori) genome to obtain a draft sequence and establish a basic resource for comprehensive genome analysis. By using the newly developed RAMEN assembler, the sequence data derived from whole-genome shotgun (WGS) sequencing were assembled into 49,345 scaffolds that span a total length of 514 Mb including gaps and 387 Mb without gaps. Because the genome size of the silkworm is estimated to be 530 Mb, almost 97% of the genome has been organized in scaffolds, of which 75% has been sequenced. By carrying out a BLAST search for 50 characteristic Bombyx genes and 11,202 non-redundant expressed sequence tags (ESTs) in a Bombyx EST database against the WGS sequence data, we evaluated the validity of the sequence for elucidating the majority of silkworm genes. Analysis of the WGS data revealed that the silkworm genome contains many repetitive sequences with an average length of <500 bp. These repetitive sequences appear to have been derived from truncated transposons, which are interspersed at 2.5- to 3-kb intervals throughout the genome. This pattern suggests that silkworm may have an active mechanism that promotes removal of transposons from the genome. We also found evidence for insertions of mitochondrial DNA fragments at 9 sites. A search for Bombyx orthologs to Drosophila genes controlling sex determination in the WGS data revealed 11 Bombyx genes and suggested that the sex-determining systems differ profoundly between the two species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of receptors in Bacillus thuringiensis crystal toxin activity.

              Bacillus thuringiensis produces crystalline protein inclusions with insecticidal or nematocidal properties. These crystal (Cry) proteins determine a particular strain's toxicity profile. Transgenic crops expressing one or more recombinant Cry toxins have become agriculturally important. Individual Cry toxins are usually toxic to only a few species within an order, and receptors on midgut epithelial cells have been shown to be critical determinants of Cry specificity. The best characterized of these receptors have been identified for lepidopterans, and two major receptor classes have emerged: the aminopeptidase N (APN) receptors and the cadherin-like receptors. Currently, 38 different APNs have been reported for 12 different lepidopterans. Each APN belongs to one of five groups that have unique structural features and Cry-binding properties. While 17 different APNs have been reported to bind to Cry toxins, only 2 have been shown to mediate toxin susceptibly in vivo. In contrast, several cadherin-like proteins bind to Cry toxins and confer toxin susceptibility in vitro, and disruption of the cadherin gene has been associated with toxin resistance. Nonetheless, only a small subset of the lepidopteran-specific Cry toxins has been shown to interact with cadherin-like proteins. This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2010
                December 2010
                16 December 2010
                : 6
                : 12
                : e1001248
                Affiliations
                [1 ]Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
                [2 ]Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
                University of Georgia, United States of America
                Author notes

                Conceived and designed the experiments: LJG YP DGH. Performed the experiments: LJG YP. Analyzed the data: LJG YP DGH. Contributed reagents/materials/analysis tools: HV. Wrote the paper: LJG DGH.

                Article
                10-PLGE-RA-4143R2
                10.1371/journal.pgen.1001248
                3002984
                21187898
                cc90a40a-7ceb-494d-b1d6-c2c5535ad86a
                Gahan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 September 2010
                : 16 November 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Biochemistry/Biomacromolecule-Ligand Interactions
                Biotechnology/Plant Biotechnology
                Cell Biology/Cellular Death and Stress Responses
                Genetics and Genomics/Animal Genetics

                Genetics
                Genetics

                Comments

                Comment on this article