15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Developmental Changes in Pharmacokinetics and Pharmacodynamics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of obesity on drug metabolism and elimination in adults and children.

          The prevalence of obesity in adults and children is rapidly increasing across the world. Several general (patho)physiological alterations associated with obesity have been described, but the specific impact of these alterations on drug metabolism and elimination and its consequences for drug dosing remains largely unknown. In order to broaden our knowledge of this area, we have reviewed and summarized clinical studies that reported clearance values of drugs in both obese and non-obese patients. Studies were classified according to their most important metabolic or elimination pathway. This resulted in a structured review of the impact of obesity on metabolic and elimination processes, including phase I metabolism, phase II metabolism, liver blood flow, glomerular filtration and tubular processes. This literature study shows that the influence of obesity on drug metabolism and elimination greatly differs per specific metabolic or elimination pathway. Clearance of cytochrome P450 (CYP) 3A4 substrates is lower in obese as compared with non-obese patients. In contrast, clearance of drugs primarily metabolized by uridine diphosphate glucuronosyltransferase (UGT), glomerular filtration and/or tubular-mediated mechanisms, xanthine oxidase, N-acetyltransferase or CYP2E1 appears higher in obese versus non-obese patients. Additionally, in obese patients, trends indicating higher clearance values were seen for drugs metabolized via CYP1A2, CYP2C9, CYP2C19 and CYP2D6, while studies on high-extraction-ratio drugs showed somewhat inconclusive results. Very limited information is available in obese children, which prevents a direct comparison between data obtained in obese children and obese adults. Future clinical studies, especially in children, adolescents and morbidly obese individuals, are needed to extend our knowledge in this clinically important area of adult and paediatric clinical pharmacology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ontogeny of drug metabolism enzymes and implications for adverse drug events.

            R Hines (2008)
            Profound changes in drug metabolizing enzyme (DME) expression occurs during development that impacts the risk of adverse drug events in the fetus and child. A review of our current knowledge suggests individual hepatic DME ontogeny can be categorized into one of three groups. Some enzymes, e.g., CYP3A7, are expressed at their highest level during the first trimester and either remain at high concentrations or decrease during gestation, but are silenced or expressed at low levels within one to two years after birth. SULT1A1 is an example of the second group of DME. These enzymes are expressed at relatively constant levels throughout gestation and minimal changes are observed postnatally. ADH1C is typical of the third DME group that are not expressed or are expressed at low levels in the fetus, usually during the second or third trimester. Substantial increases in enzyme levels are observed within the first one to two years after birth. Combined with our knowledge of other physiological factors during early life stages, knowledge regarding DME ontogeny has permitted the development of robust physiological based pharmacokinetic models and an improved capability to predict drug disposition in pediatric patients. This review will provide an overview of DME developmental expression patterns and discuss some implications of the data with regards to drug therapy. Common themes emerging from our current knowledge also will be discussed. Finally, the review will highlight gaps in knowledge that will be important to advance this field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytochrome P450 3A: ontogeny and drug disposition.

              The maturation of organ systems during fetal life and childhood exerts a profound effect on drug disposition. The maturation of drug-metabolising enzymes is probably the predominant factor accounting for age-associated changes in non-renal drug clearance. The group of drug-metabolising enzymes most studied are the cytochrome P450 (CYP) superfamily. The CYP3A subfamily is the most abundant group of CYP enzymes in the liver and consists of at least 3 isoforms: CYP3A4, 3A5 and 3A7. Many drugs are mainly metabolised by the CYP3A subfamily. Therefore, maturational changes in CYP3A ontogeny may impact on the clinical pharmacokinetics of these drugs. CYP3A4 is the most abundantly expressed CYP and accounts for approximately 30 to 40% of the total CYPcontent in human adult liver and small intestine. CYP3A5 is 83% homologous to CYP3A4, is expressed at a much lower level than CYP3A4 in the liver, but is the main CYP3A isoform in the kidney. CYP3A7 is the major CYP isoform detected in human embryonic, fetal and newborn liver, but is also detected in adult liver, although at a much lower level than CYP3A4. Substrate specificity for the individual isoforms has not been fully elucidated. Because of large interindividual differences in CYP3A4 and 3A5 expression and activity, genetic polymorphisms have been suggested. However, although some gene mutations have been identified, the impact of these mutations on the pharmacokinetics of CYP3A substrates has to be established. Ontogeny of CYP3A activity has been studied in vitro and in vivo. CYP3A7 activity is high during embryonic and fetal life and decreases rapidly during the first week of life. Conversely, CYP3A4 is very low before birth but increases rapidly thereafter, reaching 50% of adult levels between 6 and 12 months of age. During infancy, CYP3A4 activity appears to be slightly higher than that of adults. Large interindividual variations in CYP3A5 expression and activity were observed during all stages of development, but no apparent developmental pattern of CYP3A5 activity has been identified to date. Profound changes occur in the activity of CYP3A isoforms during all stages of development. These changes have, in many instances, proven to be of clinical significance when treatment involves drugs that are substrates, inhibitors or inducers of CYP3A. Investigators and clinicians should consider the impact of ontogeny on CYP3A in both pharmacokinetic study design and data interpretation, as well as when prescribing drugs to children.
                Bookmark

                Author and article information

                Journal
                The Journal of Clinical Pharmacology
                The Journal of Clinical Pharmacology
                Wiley
                00912700
                October 2018
                October 2018
                September 24 2018
                : 58
                : S10-S25
                Affiliations
                [1 ]Division of Clinical Pharmacology; Children's National Health System; Washington DC USA
                [2 ]Division of Paediatric Pharmacology and Pharmacometrics; University of Basel Children's Hospital; Basel Switzerland
                [3 ]Intensive Care and Department of Pediatric Surgery; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
                [4 ]Emeritus Professor of Pediatrics; School of Medicine; Case Western Reserve University; Cleveland OH USA
                [5 ]Department of Pediatrics; Division of Neonatology; Erasmus Medical Center-Sophia Children's Hospital; Rotterdam the Netherlands
                [6 ]Department of Development and Regeneration; KU Leuven; Leuven Belgium
                [7 ]Arkansas Children's Research Institute; Little Rock AR USA
                Article
                10.1002/jcph.1284
                30248190
                cc9637ca-6228-436f-9962-578198534d7d
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article