34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loading mechanisms of ring helicases at replication origins

      review-article
      *
      Molecular Microbiology
      Blackwell Publishing Ltd

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Threading of DNA through the central channel of a replicative ring helicase is known as helicase loading, and is a pivotal event during replication initiation at replication origins. Once loaded, the helicase recruits the primase through a direct protein–protein interaction to complete the initial ‘priming step’ of DNA replication. Subsequent assembly of the polymerases and processivity factors completes the structure of the replisome. Two replisomes are assembled, one on each strand, and move in opposite directions to replicate the parental DNA during the ‘elongation step’ of DNA replication. Replicative helicases are the motor engines of replisomes powered by the conversion of chemical energy to mechanical energy through ATP binding and hydrolysis. Bidirectional loading of two ring helicases at a replication origin is achieved by strictly regulated and intricately choreographed mechanisms, often through the action of replication initiation and helicase-loader proteins. Current structural and biochemical data reveal a wide range of different helicase-loading mechanisms. Here we review advances in this area and discuss their implications.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionary relationships and structural mechanisms of AAA+ proteins.

          Complex cellular events commonly depend on the activity of molecular "machines" that efficiently couple enzymatic and regulatory functions within a multiprotein assembly. An essential and expanding subset of these assemblies comprises proteins of the ATPases associated with diverse cellular activities (AAA+) family. The defining feature of AAA+ proteins is a structurally conserved ATP-binding module that oligomerizes into active arrays. ATP binding and hydrolysis events at the interface of neighboring subunits drive conformational changes within the AAA+ assembly that direct translocation or remodeling of target substrates. In this review, we describe the critical features of the AAA+ domain, summarize our current knowledge of how this versatile element is incorporated into larger assemblies, and discuss specific adaptations of the AAA+ fold that allow complex molecular manipulations to be carried out for a highly diverse set of macromolecular targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolutionary history and higher order classification of AAA+ ATPases.

            The AAA+ ATPases are enzymes containing a P-loop NTPase domain, and function as molecular chaperones, ATPase subunits of proteases, helicases or nucleic-acid-stimulated ATPases. All available sequences and structures of AAA+ protein domains were compared with the aim of identifying the definitive sequence and structure features of these domains and inferring the principal events in their evolution. An evolutionary classification of the AAA+ class was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of 26 major families within the AAA+ ATPase class. We also describe the position of the AAA+ ATPases with respect to the RecA/F1, helicase superfamilies I/II, PilT, and ABC classes of P-loop NTPases. The AAA+ class appears to have undergone an early radiation into the clamp-loader, DnaA/Orc/Cdc6, classic AAA, and "pre-sensor 1 beta-hairpin" (PS1BH) clades. Within the PS1BH clade, chelatases, MoxR, YifB, McrB, Dynein-midasin, NtrC, and MCMs form a monophyletic assembly defined by a distinct insert in helix-2 of the conserved ATPase core, and additional helical segment between the core ATPase domain and the C-terminal alpha-helical bundle. At least 6 distinct AAA+ proteins, which represent the different major clades, are traceable to the last universal common ancestor (LUCA) of extant cellular life. Additionally, superfamily III helicases, which belong to the PS1BH assemblage, were probably present at this stage in virus-like "selfish" replicons. The next major radiation, at the base of the two prokaryotic kingdoms, bacteria and archaea, gave rise to several distinct chaperones, ATPase subunits of proteases, DNA helicases, and transcription factors. The third major radiation, at the outset of eukaryotic evolution, contributed to the origin of several eukaryote-specific adaptations related to nuclear and cytoskeletal functions. The new relationships and previously undetected domains reported here might provide new leads for investigating the biology of AAA+ ATPases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn.

              Integration host factor (IHF) is a small heterodimeric protein that specifically binds to DNA and functions as an architectural factor in many cellular processes in prokaryotes. Here, we report the crystal structure of IHF complexed with 35 bp of DNA. The DNA is wrapped around the protein and bent by >160 degrees, thus reversing the direction of the helix axis within a very short distance. Much of the bending occurs at two large kinks where the base stacking is interrupted by intercalation of a proline residue. IHF contacts the DNA exclusively via the phosphodiester backbone and the minor groove and relies heavily on indirect readout to recognize its binding sequence. One such readout involves a six-base A tract, providing evidence for the importance of a narrow minor groove.
                Bookmark

                Author and article information

                Journal
                Mol Microbiol
                Mol. Microbiol
                mmi
                Molecular Microbiology
                Blackwell Publishing Ltd (Oxford, UK )
                0950-382X
                1365-2958
                April 2012
                15 March 2012
                : 84
                : 1
                : 6-16
                Affiliations
                School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park Nottingham NG7 2RD, UK
                Author notes
                *For correspondence. E-mail panos.soultanas@ 123456nottingham.ac.uk ; Tel. (+44) 1159513525; Fax (+44) 1158468002.

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms

                Article
                10.1111/j.1365-2958.2012.08012.x
                3401641
                22417087
                cc984704-de40-4407-a868-d45f2762e51e
                © 2012 Blackwell Publishing Ltd

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 09 February 2012
                Categories
                MicroReview

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article