34
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. intermediacy of H(2)O(2)- and p53-dependent pathways.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Doxorubicin (DOX), a widely used chemotherapeutic agent, exhibits cardiotoxicity as an adverse side effect in cancer patients. DOX-mediated cardiomyopathy is linked to its ability to induce apoptosis in endothelial cells and cardiomyocytes by activation of p53 protein and reactive oxygen species. We evaluated the potential roles of H(2)O(2) and p53 in DOX-induced apoptosis in normal bovine aortic endothelial cells and adult rat cardiomyocytes and in tumor cell lines PA-1 (human ovarian teratocarcinoma) and MCF-7 (human breast adenocarcinoma). Time course measurements indicated that activation of caspase-3 preceded the stimulation of p53 transcriptional activity in endothelial cells. In contrast, DOX caused early activation of p53 in tumor cells that was followed by caspase-3 activation and DNA fragmentation. These findings suggest that the transcriptional activation of p53 in DOX-induced apoptosis in endothelial cells may not be as crucial as it is in tumor cells. Further evidence was obtained using a p53 inhibitor, pifithrin-alpha. Pifithrin-alpha completely suppressed DOX-induced activation of p53 in both normal and tumor cell lines and prevented apoptosis in tumor cell lines but not in endothelial cells and cardiomyocytes. In contrast, detoxification of H(2)O(2), either by redox-active metalloporphyrin or overexpression of glutathione peroxidase, decreased DOX-induced apoptosis in endothelial cells and cardiomyocytes but not in tumor cells. This newly discovered mechanistic difference in DOX-induced apoptotic cell death in normal versus tumor cells will be useful in developing drugs that selectively mitigate the toxic side effects of DOX without affecting its antitumor action.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          Jun 11 2004
          : 279
          : 24
          Affiliations
          [1 ] Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
          Article
          S0021-9258(20)66460-2
          10.1074/jbc.M400944200
          15054096
          cc9aef6e-1b06-4b4c-a633-b9b2497d242b
          History

          Comments

          Comment on this article