39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of the NOD-Like Receptor Protein 3 Inflammasome Is Protective in Juvenile Influenza A Virus Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza A virus (IAV) is a significant cause of life-threatening lower respiratory tract infections in children. Antiviral therapy is the mainstay of treatment, but its effectiveness in this age group has been questioned. In addition, damage inflicted on the lungs by the immune response to the virus may be as important to the development of severe lung injury during IAV infection as the cytotoxic effects of the virus itself. A crucial step in the immune response to IAV is activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and the subsequent secretion of the inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18). The IAV matrix 2 proton channel (M2) has been shown to be an important activator of the NLRP3 inflammasome during IAV infection. We sought to interrupt this ion channel-mediated activation of the NLRP3 inflammasome through inhibition of NLRP3 or the cytokine downstream from its activation, IL-1β. Using our juvenile mouse model of IAV infection, we show that inhibition of the NLRP3 inflammasome with the small molecule inhibitor, MCC950, beginning 3 days after infection with IAV, improves survival in juvenile mice. Treatment with MCC950 reduces NLRP3 levels in lung homogenates, decreases IL-18 secretion into the alveolar space, and inhibits NLRP3 inflammasome activation in alveolar macrophages. Importantly, inhibition of the NLRP3 inflammasome with MCC950 does not impair viral clearance. In contrast, inhibition of IL-1β signaling with the IL-1 receptor antagonist, anakinra, is insufficient to protect juvenile mice from IAV. Our findings suggest that targeting the NLRP3 inflammasome in juvenile IAV infection may improve disease outcomes in this age group.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NLRP3 inflammasome and its inhibitors: a review

          Inflammasomes are newly recognized, vital players in innate immunity. The best characterized is the NLRP3 inflammasome, so-called because the NLRP3 protein in the complex belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs) and is also known as “pyrin domain-containing protein 3”. The NLRP3 inflammasome is associated with onset and progression of various diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease, cryopyrin-associated periodic fever syndrome, as well as other auto-immune and auto-inflammatory diseases. Several NLRP3 inflammasome inhibitors have been described, some of which show promise in the clinic. The present review will describe the structure and mechanisms of activation of the NLRP3 inflammasome, its association with various auto-immune and auto-inflammatory diseases, and the state of research into NLRP3 inflammasome inhibitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA.

            Viral infection induces the production of interleukin (IL)-1beta and IL-18 in macrophages through the activation of caspase-1, but the mechanism by which host cells sense viruses to induce caspase-1 activation is unknown. In this report, we have identified a signaling pathway leading to caspase-1 activation that is induced by double-stranded RNA (dsRNA) and viral infection that is mediated by Cryopyrin/Nalp3. Stimulation of macrophages with dsRNA, viral RNA, or its analog poly(I:C) induced the secretion of IL-1beta and IL-18 in a cryopyrin-dependent manner. Consistently, caspase-1 activation triggered by poly(I:C), dsRNA, and viral RNA was abrogated in macrophages lacking cryopyrin or the adaptor ASC (apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain) but proceeded normally in macrophages deficient in Toll-like receptor 3 or 7. We have also shown that infection with Sendai and influenza viruses activates the cryopyrin inflammasome. Finally, cryopyrin was required for IL-1beta production in response to poly(I:C) in vivo. These results identify a mechanism mediated by cryopyrin and ASC that links dsRNA and viral infection to caspase-1 activation resulting in IL-1beta and IL-18 production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection.

              Interleukin-1alpha (IL-1alpha) and IL-1beta are proinflammatory cytokines, which induce a plethora of genes and activities by binding to the type 1 IL-1 receptor (IL-1R1). We have investigated the role of IL-1 during pulmonary antiviral immune responses in IL-1R1(-/-) mice infected with influenza virus. IL-1R1(-/-) mice showed markedly reduced inflammatory pathology in the lung, primarily due to impaired neutrophil recruitment. Activation of CD4(+) T cells in secondary lymphoid organs and subsequent migration to the lung were impaired in the absence of IL-1R1. In contrast, activation of virus-specific cytotoxic T lymphocytes and killing of virus-infected cells in the lung were intact. Influenza virus-specific immunoglobulin G (IgG) and IgA antibody responses were intact, while the IgM response was markedly reduced in both serum and mucosal sites in IL-1R1(-/-) mice. We found significantly increased mortality in the absence of IL-1R1; however, lung viral titers were only moderately increased. Our results demonstrate that IL-1alpha/beta mediate acute pulmonary inflammatory pathology while enhancing survival during influenza virus infection. IL-1alpha/beta appear not to influence killing of virus-infected cells but to enhance IgM antibody responses and recruitment of CD4(+) T cells to the site of infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                10 July 2017
                2017
                : 8
                : 782
                Affiliations
                [1] 1Department of Pediatrics, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
                [2] 2Ann & Robert H. Lurie Children’s Hospital of Chicago , Chicago, IL, United States
                [3] 3Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
                [4] 4Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University , Chicago, IL, United States
                Author notes

                Edited by: István Vadász, Universities of Giessen and Marburg Lung Center, Germany

                Reviewed by: Bastian Opitz, Charité Universitätsmedizin Berlin, Germany; Ian Christopher Davis, The Ohio State University Columbus, United States

                *Correspondence: Bria M. Coates, b-coates@ 123456northwestern.edu

                Specialty section: This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00782
                5502347
                28740490
                cca1d388-028c-441a-ba94-f496b7814680
                Copyright © 2017 Coates, Staricha, Ravindran, Koch, Cheng, Davis, Shumaker and Ridge.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 May 2017
                : 20 June 2017
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 39, Pages: 12, Words: 7479
                Funding
                Funded by: National Institute of Child Health and Human Development 10.13039/100000071
                Award ID: K12HD047349
                Funded by: American Thoracic Society 10.13039/100001465
                Funded by: American Lung Association 10.13039/100002590
                Funded by: Respiratory Health Association 10.13039/100007849
                Funded by: National Institutes of Health 10.13039/100000002
                Categories
                Immunology
                Original Research

                Immunology
                children,influenza,inflammasome,inflammation,mcc950,acute lung injury
                Immunology
                children, influenza, inflammasome, inflammation, mcc950, acute lung injury

                Comments

                Comment on this article