11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of structure and metal ions specificity of Co2+-binding RNA aptamers.

      Biochemistry
      Base Sequence, Binding Sites, Chemistry, Physical, Cobalt, chemistry, metabolism, Metals, Molecular Structure, Nucleic Acid Conformation, Physicochemical Phenomena, RNA, RNA, Fungal, RNA, Transfer, Phe

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies on RNA motifs capable of binding metal ions have largely focused on Mg(2+)-specific motifs, therefore information concerning interactions of other metal ions with RNA is still very limited. Application of the in vitro selection approach allowed us to isolate two RNA aptamers that bind Co(2+) ions. Structural analysis of their secondary structures revealed the presence of two motifs, loop E and "kissing" loop complex, commonly occurring in RNA molecules. The Co(2+)-induced cleavage method was used for identification of Co(2+)-binding sites after the determination of the optimal cleavage conditions. In the aptamers, Co(2+) ions seem to bind to N7 atoms of purines, inducing cleavage of the adjacent phosphodiester bonds, similarly as is the case with yeast tRNA(Phe). Although the in vitro selection experiment was carried out in the presence of Co(2+) ions only, the aptamers displayed broader metal ions specificity. This was shown by inhibition of Co(2+)-induced cleavages in the presence of the following transition metal ions: Zn(2+), Cd(2+), Ni(2+), and Co(NH(3))(6)(3+) complex. On the other hand, alkaline metal ions such as Mg(2+), Ca(2+), Sr(2+), and Ba(2+) affected Co(2+)-induced cleavages only slightly. Multiple metal ions specificity of Co(2+)-binding sites has also been reported for other in vitro selected or natural RNAs. Among many factors that influence metal specificity of the Co(2+)-binding pocket, chemical properties of metal ions, such as their hardness as well as the structure of the coordination site, seem to be particularly important.

          Related collections

          Author and article information

          Comments

          Comment on this article