4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects.

      The New England journal of medicine
      Adrenergic beta-Antagonists, pharmacology, Angiotensin-Converting Enzyme Inhibitors, Antihypertensive Agents, Blood Pressure, drug effects, Bradykinin, analogs & derivatives, Bradykinin Receptor Antagonists, Captopril, Diet, Sodium-Restricted, Drug Interactions, Drug Therapy, Combination, Female, Humans, Hypertension, physiopathology, Kidney, Losartan, Male, Reference Values, Renin-Angiotensin System, Single-Blind Method

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiotensin-converting-enzyme (ACE) inhibitors not only decrease the production of angiotensin II but also decrease the degradation of bradykinin. In this study, a specific bradykinin-receptor antagonist, icatibant acetate (HOE 140), was used to determine the contribution of bradykinin to the short-term effects of ACE inhibition on blood pressure and plasma renin activity in both normotensive and hypertensive subjects. We compared the hemodynamic, renal, and endocrine effects of captopril alone (25 mg), captopril plus icatibant (100 microg per kilogram of body weight), the angiotensin II subtype 1-receptor antagonist losartan (75 mg), and placebo in 20 subjects with normal blood pressure and 7 subjects with hypertension. The subjects were studied while they were salt depleted (i.e., in balance on a diet in which they were allowed 10 mmol of sodium per day). The drugs were administered on four separate study days in a single-blind, randomized fashion. The coadministration of icatibant significantly attenuated the hypotensive effect of captopril (maximal decrease in mean arterial pressure for all subjects combined, 10.5+/-1.0 mm Hg, as compared with 14.0+/-1.0 mm Hg for captopril alone; P=0.001), in such a way that the decrease in blood pressure after the administration of captopril plus icatibant was similar to that after the administration of losartan (maximal decrease in mean arterial pressure, 11.0+/-1.7 mm Hg). Icatibant did not alter the renal hemodynamic response to captopril, but it significantly altered the change in plasma renin activity in response to ACE inhibition (-0.4+/-0.4 ng of angiotensin I per milliliter per hour, as compared with 2.0+/-0.7 ng per milliliter per hour for captopril alone; P=0.007). The magnitude of these effects was similar in both the normotensive and the hypertensive subjects, as well as in both the black subjects and the white subjects. These data confirm that bradykinin contributes to the short-term effects of ACE inhibition on blood pressure in normotensive and hypertensive persons and suggest that bradykinin also contributes to the short-term effects of ACE inhibition on the renin-angiotensin system.

          Related collections

          Author and article information

          Comments

          Comment on this article