9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Advances in graphene-based flexible and wearable strain sensors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references241

          • Record: found
          • Abstract: not found
          • Article: not found

          Hydrogels for tissue engineering.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition.

            Integration of individual two-dimensional graphene sheets into macroscopic structures is essential for the application of graphene. A series of graphene-based composites and macroscopic structures have been recently fabricated using chemically derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically derived graphene sheets. Here we report the direct synthesis of three-dimensional foam-like graphene macrostructures, which we call graphene foams (GFs), by template-directed chemical vapour deposition. A GF consists of an interconnected flexible network of graphene as the fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as ∼0.5 wt%, GF/poly(dimethyl siloxane) composites show a very high electrical conductivity of ∼10 S cm(-1), which is ∼6 orders of magnitude higher than chemically derived graphene-based composites. Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors. © 2011 Macmillan Publishers Limited. All rights reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The chemistry of graphene oxide.

              The chemistry of graphene oxide is discussed in this critical review. Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure. Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed. This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references).
                Bookmark

                Author and article information

                Contributors
                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                May 2023
                May 2023
                : 464
                : 142576
                Article
                10.1016/j.cej.2023.142576
                ccb27c7d-0098-44dd-ad5b-da1db9c70415
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article