Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Impact of Hypokalemia on Electromechanical Window, Excitation Wavelength and Repolarization Gradients in Guinea-Pig and Rabbit Hearts

1 , 2 , *

PLoS ONE

Public Library of Science

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Normal hearts exhibit a positive time difference between the end of ventricular contraction and the end of QT interval, which is referred to as the electromechanical (EM) window. Drug-induced prolongation of repolarization may lead to the negative EM window, which was proposed to be a novel proarrhythmic marker. This study examined whether abnormal changes in the EM window may account for arrhythmogenic effects produced by hypokalemia. Left ventricular pressure, electrocardiogram, and epicardial monophasic action potentials were recorded in perfused hearts from guinea-pig and rabbit. Hypokalemia (2.5 mM K+) was found to prolong repolarization, reduce the EM window, and promote tachyarrhythmia. Nevertheless, during both regular pacing and extrasystolic excitation, the increased QT interval invariably remained shorter than the duration of mechanical systole, thus yielding positive EM window values. Hypokalemia-induced arrhythmogenicity was associated with slowed ventricular conduction, and shortened effective refractory periods, which translated to a reduced excitation wavelength index. Hypokalemia also evoked non-uniform prolongation of action potential duration in distinct epicardial regions, which resulted in increased spatial variability in the repolarization time. These findings suggest that arrhythmogenic effects of hypokalemia are not accounted for by the negative EM window, and are rather attributed to abnormal changes in ventricular conduction times, refractoriness, excitation wavelength, and spatial repolarization gradients.

      Related collections

      Most cited references 39

      • Record: found
      • Abstract: not found
      • Article: not found

      Drug-induced prolongation of the QT interval.

       Dan Roden (2004)
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Serum potassium levels and mortality in acute myocardial infarction.

        Clinical practice guidelines recommend maintaining serum potassium levels between 4.0 and 5.0 mEq/L in patients with acute myocardial infarction (AMI). These guidelines are based on small studies that associated low potassium levels with ventricular arrhythmias in the pre-β-blocker and prereperfusion era. Current studies examining the relationship between potassium levels and mortality in AMI patients are lacking. To determine the relationship between serum potassium levels and in-hospital mortality in AMI patients in the era of β-blocker and reperfusion therapy. Retrospective cohort study using the Cerner Health Facts database, which included 38,689 patients with biomarker-confirmed AMI, admitted to 67 US hospitals between January 1, 2000, and December 31, 2008. All patients had in-hospital serum potassium measurements and were categorized by mean postadmission serum potassium level (<3.0, 3.0-<3.5, 3.5-<4.0, 4.0-<4.5, 4.5-<5.0, 5.0-<5.5, and ≥5.5 mEq/L). Hierarchical logistic regression was used to determine the association between potassium levels and outcomes after adjusting for patient- and hospital-level factors. All-cause in-hospital mortality and the composite of ventricular fibrillation or cardiac arrest. There was a U-shaped relationship between mean postadmission serum potassium level and in-hospital mortality that persisted after multivariable adjustment. Compared with the reference group of 3.5 to less than 4.0 mEq/L (mortality rate, 4.8%; 95% CI, 4.4%-5.2%), mortality was comparable for mean postadmission potassium of 4.0 to less than 4.5 mEq/L (5.0%; 95% CI, 4.7%-5.3%), multivariable-adjusted odds ratio (OR), 1.19 (95% CI, 1.04-1.36). Mortality was twice as great for potassium of 4.5 to less than 5.0 mEq/L (10.0%; 95% CI, 9.1%-10.9%; multivariable-adjusted OR, 1.99; 95% CI, 1.68-2.36), and even greater for higher potassium strata. Similarly, mortality rates were higher for potassium levels of less than 3.5 mEq/L. In contrast, rates of ventricular fibrillation or cardiac arrest were higher only among patients with potassium levels of less than 3.0 mEq/L and at levels of 5.0 mEq/L or greater. Among inpatients with AMI, the lowest mortality was observed in those with postadmission serum potassium levels between 3.5 and <4.5 mEq/L compared with those who had higher or lower potassium levels.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Screening for acute IKr block is insufficient to detect torsades de pointes liability: role of late sodium current.

          New drugs are routinely screened for IKr blocking properties thought to predict QT prolonging and arrhythmogenic liability. However, recent data suggest that chronic (hours) drug exposure to phosphoinositide 3-kinase inhibitors used in cancer can prolong QT by inhibiting potassium currents and increasing late sodium current (INa-L) in cardiomyocytes. We tested the extent to which IKr blockers with known QT liability generate arrhythmias through this pathway. Acute exposure to dofetilide, an IKr blocker without other recognized electropharmacologic actions, produced no change in ion currents or action potentials in adult mouse cardiomyocytes, which lack IKr. By contrast, 2 to 48 hours of exposure to the drug generated arrhythmogenic afterdepolarizations and ≥15-fold increases in INa-L. Including phosphatidylinositol 3,4,5-trisphosphate, a downstream effector for the phosphoinositide 3-kinase pathway, in the pipette inhibited these effects. INa-L was also increased, and inhibitable by phosphatidylinositol 3,4,5-trisphosphate, with hours of dofetilide exposure in human-induced pluripotent stem cell-derived cardiomyocytes and in Chinese hamster ovary cells transfected with SCN5A, encoding sodium current. Cardiomyocytes from dofetilide-treated mice similarly demonstrated increased INa-L and afterdepolarizations. Other agents with variable IKr-blocking potencies and arrhythmia liability produced a range of effects on INa-L, from marked increases (E-4031, d-sotalol, thioridazine, and erythromycin) to little or no effect (haloperidol, moxifloxacin, and verapamil). Some but not all drugs designated as arrhythmogenic IKr blockers can generate arrhythmias by augmenting INa-L through the phosphoinositide 3-kinase pathway. These data identify a potential mechanism for individual susceptibility to proarrhythmia and highlight the need for a new paradigm to screen drugs for QT prolonging and arrhythmogenic liability. © 2014 American Heart Association, Inc.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
            [2 ]Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
            The Ohio State University, United States of America
            Author notes

            Competing Interests: The author has declared that no competing interests exist.

            Conceived and designed the experiments: OO. Performed the experiments: OO. Analyzed the data: OO. Contributed reagents/materials/analysis tools: OO. Contributed to the writing of the manuscript: OO.

            Contributors
            Role: Editor
            Journal
            PLoS One
            PLoS ONE
            plos
            plosone
            PLoS ONE
            Public Library of Science (San Francisco, USA )
            1932-6203
            2014
            20 August 2014
            : 9
            : 8
            25141124
            4139393
            PONE-D-14-23021
            10.1371/journal.pone.0105599
            (Editor)

            Osadchii. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

            Counts
            Pages: 11
            Funding
            This study was supported by the Novo Nordisk Foundation and the Obel Family Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
            Categories
            Research Article
            Biology and Life Sciences
            Physiology
            Cardiovascular Physiology
            Medicine and Health Sciences
            Cardiology
            Cardiovascular Diseases
            Arrhythmia
            Custom metadata
            The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

            Uncategorized

            Comments

            Comment on this article