1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Arginase in Selective Impairment of Endothelium-Dependent Nitric Oxide Synthase-Mediated Dilation of Retinal Arterioles during Early Diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Retinal vasomotor activity can be regulated by two major endothelial enzymes, nitric oxide synthase (NOS) and cyclooxygenase (COX). The vascular arginase also consumes a NOS substrate and thus impedes NOS-mediated vasodilation. Diabetes mellitus exhibits vascular complications in the retina with elevated oxidative stress and compromised NOS-mediated vasodilation. However, the underlying molecular mechanisms remain unclear, and the effect of diabetes on COX-mediated vasodilation is unknown. Herein, we examined the relative impact of diabetes on retinal arteriolar dilations to COX and NOS activation and the roles of arginase and superoxide in diabetes-induced vasomotor dysfunction.

          Methods

          Retinal arterioles were isolated from streptozocin-induced diabetic pigs (2 weeks of hyperglycemia, 433 ± 27 mg/dL) or age-matched control pigs (97 ± 4 mg/dL). The vasodilations to bradykinin (NOS activator) and histamine (NOS/COX activator) were examined in vitro.

          Results

          Retinal arteriolar dilations to histamine and bradykinin were significantly reduced after 2 weeks of diabetes. The NOS inhibitor N G-nitro-L-arginine methyl ester (L-NAME) attenuated the dilations of control vessels, but not diabetic vessels, to histamine. In the presence of L-NAME and COX inhibitor indomethacin, histamine-induced dilations of control and diabetic vessels were reduced similarly. Treatment of diabetic vessels with arginase inhibitor nor-NOHA, but not superoxide dismutase mimetic TEMPOL, preserved both histamine- and bradykinin-induced dilations in an L-NAME-sensitive manner.

          Conclusions

          Arginase, rather than superoxide, impairs endothelium-dependent NOS-mediated dilation of retinal arterioles during diabetes, whereas vasodilation mediated by COX remains intact. Blockade of vascular arginase may improve endothelial function of retinal arterioles during early onset of diabetes.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of retinal blood flow in health and disease.

          Optimal retinal neuronal cell function requires an appropriate, tightly regulated environment, provided by cellular barriers, which separate functional compartments, maintain their homeostasis, and control metabolic substrate transport. Correctly regulated hemodynamics and delivery of oxygen and metabolic substrates, as well as intact blood-retinal barriers are necessary requirements for the maintenance of retinal structure and function. Retinal blood flow is autoregulated by the interaction of myogenic and metabolic mechanisms through the release of vasoactive substances by the vascular endothelium and retinal tissue surrounding the arteriolar wall. Autoregulation is achieved by adaptation of the vascular tone of the resistance vessels (arterioles, capillaries) to changes in the perfusion pressure or metabolic needs of the tissue. This adaptation occurs through the interaction of multiple mechanisms affecting the arteriolar smooth muscle cells and capillary pericytes. Mechanical stretch and increases in arteriolar transmural pressure induce the endothelial cells to release contracting factors affecting the tone of arteriolar smooth muscle cells and pericytes. Close interaction between nitric oxide (NO), lactate, arachidonic acid metabolites, released by the neuronal and glial cells during neural activity and energy-generating reactions of the retina strive to optimize blood flow according to the metabolic needs of the tissue. NO, which plays a central role in neurovascular coupling, may exert its effect, by modulating glial cell function involved in such vasomotor responses. During the evolution of ischemic microangiopathies, impairment of structure and function of the retinal neural tissue and endothelium affect the interaction of these metabolic pathways, leading to a disturbed blood flow regulation. The resulting ischemia, tissue hypoxia and alterations in the blood barrier trigger the formation of macular edema and neovascularization. Hypoxia-related VEGF expression correlates with the formation of neovessels. The relief from hypoxia results in arteriolar constriction, decreases the hydrostatic pressure in the capillaries and venules, and relieves endothelial stretching. The reestablished oxygenation of the inner retina downregulates VEGF expression and thus inhibits neovascularization and macular edema. Correct control of the multiple pathways, such as retinal blood flow, tissue oxygenation and metabolic substrate support, aiming at restoring retinal cell metabolic interactions, may be effective in preventing damage occurring during the evolution of ischemic microangiopathies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase.

            Superoxide levels are elevated in the retina in patients with diabetes, and cytochrome c is released from the mitochondria. The purpose of this study was to elucidate the mechanism involved in the oxidative damage of retinal mitochondria in diabetes and to determine whether mitochondrial superoxide dismutase (MnSOD) provides protection. Effects of diabetes were investigated on superoxide and GSH levels, electron transport complexes I and III, and membrane permeability in the isolated mitochondria prepared from the retinas of streptozotocin diabetic mice. To investigate the effect of MnSOD, retinal mitochondrial oxidative stress and electron transport complexes were determined in mice overexpressing MnSOD (MnSOD-Tg). Histopathology was evaluated in trypsin-digested retina. Retinal mitochondria had twofold increase in superoxide levels in nontransgenic (wild-type [WT]) diabetic mice compared with WT nondiabetic mice. In the same retina, diabetes decreased mitochondrial GSH levels by 40% and complex III activity by approximately 20%, and it increased mitochondrial membrane permeability (swelling) by more than twofold; however, complex I activity was not affected. Overexpression of MnSOD inhibited diabetes-induced increases in mitochondrial superoxide levels and membrane permeability and the decrease in complex III activity. GSH values, however, were not statistically different in WT and MnSOD-Tg diabetic mice. In contrast to the diabetes-induced increase in the number of degenerate (acellular) capillaries in WT diabetic mice, the numbers of acellular capillaries in MnSOD-Tg nondiabetic and diabetic mice were similar to those in WT nondiabetic mice. Retinal mitochondria experience increased oxidative damage in diabetes, and complex III is one of the sources of increased superoxide. MnSOD protects the retina from diabetes-induced abnormalities in the mitochondria and prevents vascular histopathology, strongly implicating the role for MnSOD in the pathogenesis of retinopathy in diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hyperglycemia increases mitochondrial superoxide in retina and retinal cells.

              Oxidative stress is believed to play a significant role in the development of diabetic retinopathy. In this study, we have investigated the effects of elevated glucose concentration on the production of superoxide anion by retina and retinal cells, the cellular source of the superoxide, the effect of therapies that are known to inhibit diabetic retinopathy on the superoxide production, and the role of the superoxide in cell death in elevated glucose concentration. Superoxide release was measured from retinas collected from streptozotocin-diabetic rats (2 months) treated with or without aminoguanidine, aspirin, or vitamin E, and from transformed retinal Müller cells (rMC-1) and bovine retinal endothelial cells (BREC) incubated in normal (5 mM) and high (25 mM) glucose. Diabetes (retina) or incubation in elevated glucose concentration (rMC-1 and BREC cells) significantly increased superoxide production, primarily from mitochondria, because an inhibitor of mitochondrial electron transport chain complex II normalized superoxide production. Inhibition of reduced nicotinamine adenine dinucleotide phosphate (NADPH) oxidase or nitric oxide synthase had little or no effect on the glucose-induced increase in superoxide. Treatment of diabetic animals with aminoguanidine, aspirin, or vitamin E for 2 months significantly inhibited the diabetes-induced increase in production of superoxide in the retinas. Despite the increased production of superoxide, no increase in protein carbonyls was detected in retinal proteins from animals diabetic for 2-6 months or rMC-1 cells incubated in 25 mM glucose for 5 d unless the activities of calpain or the proteosome were inhibited. Addition of copper/zinc-containing superoxide dismutase to the media of rMC-1 and BREC cells inhibited the apoptotic death caused by elevated glucose. Diabetes-like glucose concentration increases superoxide production in retinal cells, and the superoxide contributes to impaired viability and increased cell death under those circumstances. Three therapies that inhibit the development of diabetic retinopathy all inhibit superoxide production, raising a possibility that these therapies inhibit retinopathy in part by inhibiting a hyperglycemia-induced increase in superoxide production.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                21 May 2020
                May 2020
                : 61
                : 5
                : 36
                Affiliations
                [ 1 ]Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States
                [ 2 ]Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
                Author notes
                [* ]Correspondence: Travis W. Hein, Department of Medical Physiology, Texas A&M Health Science Center, 8447 Riverside Parkway, Bryan, TX 77807, USA; thein@ 123456tamu.edu .
                Article
                IOVS-19-28899
                10.1167/iovs.61.5.36
                7405695
                32437549
                ccb8d003-09d3-4a7f-be99-12ff043bac38
                Copyright 2020 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 17 March 2020
                : 19 November 2019
                Page count
                Pages: 7
                Categories
                Physiology and Pharmacology
                Physiology and Pharmacology

                arginase,diabetes,nitric oxide,retinal arterioles,vasodilation

                Comments

                Comment on this article