75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases

      other
      Archives of Medical Science : AMS
      Termedia Publishing House
      homocysteine, paraoxonase, homocysteine thiolactonase, oxidative stress

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Homocysteine (Hcy) is an accepted independent risk factor for several major pathologies including cardiovascular disease, birth defects, osteoporosis, Alzheimer's disease, and renal failure. Interestingly, many of the pathologies associated with homocysteine are also linked to oxidative stress. The enzyme paraoxonase (PON1) – so named because of its ability to hydrolyse the toxic metabolite of parathion, paraoxon – was also shown early after its identification to manifest arylesterase activity. Although the preferred endogenous substrate of PON1 remains unknown, lactones comprise one possible candidate class. Homocysteine-thiolactone can be disposed of by enzymatic hydrolysis by the serum Hcy-thiolactonase/paraoxonase carried on high-density lipoprotein (HDL). In this review, Hcy and the PON1 enzyme family were scrutinized from different points of view in the literature and the recent articles on these subjects were examined to determine whether these two molecular groups are related to each other like a coin with two different sides, so close and yet so different and so opposite.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase.

          HDL levels are inversely related to the risk of developing atherosclerosis. In serum, paraoxonase (PON) is associated with HDL, and was shown to inhibit LDL oxidation. Whether PON also protects HDL from oxidation is unknown, and was determined in the present study. In humans, we found serum HDL PON activity and HDL susceptibility to oxidation to be inversely correlated (r2 = 0.77, n = 15). Supplementing human HDL with purified PON inhibited copper-induced HDL oxidation in a concentration-dependent manner. Adding PON to HDL prolonged the oxidation lag phase and reduced HDL peroxide and aldehyde formation by up to 95%. This inhibitory effect was most pronounced when PON was added before oxidation initiation. When purified PON was added to whole serum, essentially all of it became HDL-associated. The PON-enriched HDL was more resistant to copper ion-induced oxidation than was control HDL. Compared with control HDL, HDL from PON-treated serum showed a 66% prolongation in the lag phase of its oxidation, and up to a 40% reduction in peroxide and aldehyde content. In contrast, in the presence of various PON inhibitors, HDL oxidation induced by either copper ions or by a free radical generating system was markedly enhanced. As PON inhibited HDL oxidation, two major functions of HDL were assessed: macrophage cholesterol efflux, and LDL protection from oxidation. Compared with oxidized untreated HDL, oxidized PON-treated HDL caused a 45% increase in cellular cholesterol efflux from J-774 A.1 macrophages. Both HDL-associated PON and purified PON were potent inhibitors of LDL oxidation. Searching for a possible mechanism for PON-induced inhibition of HDL oxidation revealed PON (2 paraoxonase U/ml)-mediated hydrolysis of lipid peroxides (by 19%) and of cholesteryl linoleate hydroperoxides (by 90%) in oxidized HDL. HDL-associated PON, as well as purified PON, were also able to substantially hydrolyze (up to 25%) hydrogen peroxide (H2O2), a major reactive oxygen species produced under oxidative stress during atherogenesis. Finally, we analyzed serum PON activity in the atherosclerotic apolipoprotein E-deficient mice during aging and development of atherosclerotic lesions. With age, serum lipid peroxidation and lesion size increased, whereas serum PON activity decreased. We thus conclude that HDL-associated PON possesses peroxidase-like activity that can contribute to the protective effect of PON against lipoprotein oxidation. The presence of PON in HDL may thus be a major contributor to the antiatherogenicity of this lipoprotein.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities.

            The paraoxonase (PON) gene family in humans has three members, PON1, PON2, and PON3. Their physiological role(s) and natural substrates are uncertain. We developed a baculovirus-mediated expression system, suitable for all three human PONs, and optimized procedures for their purification. The recombinant PONs are glycosylated with high-mannose-type sugars, which are important for protein stability but are not essential for their enzymatic activities. Enzymatic characterization of the purified PONs has revealed them to be lactonases/lactonizing enzymes, with some overlapping substrates (e.g., aromatic lactones), but also to have distinctive substrate specificities. All three PONs metabolized very efficiently 5-hydroxy-eicosatetraenoic acid 1,5-lactone and 4-hydroxy-docosahexaenoic acid, which are products of both enzymatic and nonenzymatic oxidation of arachidonic acid and docosahexaenoic acid, respectively, and may represent the PONs' endogenous substrates. Organophosphates are hydrolyzed almost exclusively by PON1, whereas bulky drug substrates such as lovastatin and spironolactone are hydrolyzed only by PON3. Of special interest is the ability of the human PONs, especially PON2, to hydrolyze and thereby inactivate N-acyl-homoserine lactones, which are quorum-sensing signals of pathogenic bacteria. None of the recombinant PONs protected low density lipoprotein against copper-induced oxidation in vitro.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modulation of paraoxonase (PON1) activity.

              Paraoxonase 1 (PON1) is a serum enzyme closely associated with high density lipoprotein (HDL). PON1 hydrolyzes several organophosphorus compounds used as insecticides, as well as nerve agents; it metabolizes toxic oxidized lipids associated with both low density lipoprotein (LDL) and HDL; and it can hydrolyze a number of lactone-containing pharmaceutical compounds, inactivating some, while activating others. Serum PON1 activity in a given population can vary by 40-fold. Though most of this variation can be explained by polymorphisms in the coding region (Q192R) and the 5' regulatory region (T-108C), modulation of PON1 by a variety of other factors should be taken into account, including other polymorphisms recently discovered but not yet characterized. This paper examines the major factors (environmental chemicals, drugs, smoking, alcohol, diet, age, disease conditions) that have been shown to modulate PON1 activity in either direction. As PON1 plays a protective role in organophosphate toxicity, and, because of its antioxidant capacity, in cardiovascular disease, a better understanding of how PON1 can be modulated by environmental factors has potential toxicological and clinical consequences.
                Bookmark

                Author and article information

                Journal
                Arch Med Sci
                Arch Med Sci
                AMS
                Archives of Medical Science : AMS
                Termedia Publishing House
                1734-1922
                1896-9151
                29 February 2012
                29 February 2012
                : 8
                : 1
                : 138-153
                Affiliations
                Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya, Turkey
                Author notes
                Corresponding author: Prof. Dr. Necat Yilmaz, Antalya Education and Research Hospital, Clinical Biochemistry, Central Laboratory, Ministry of Health Antalya, Turkey, Phone: 00905053578305. E-mail: necatyilmaz@ 123456hotmail.com
                Article
                18224
                10.5114/aoms.2012.27294
                3309450
                22457688
                ccb95cfe-47fb-437b-93b4-fb01aa4f8809
                Copyright © 2012 Termedia & Banach

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 November 2010
                : 17 February 2011
                : 07 April 2011
                Categories
                State of the Art Paper

                Medicine
                oxidative stress,homocysteine thiolactonase,homocysteine,paraoxonase
                Medicine
                oxidative stress, homocysteine thiolactonase, homocysteine, paraoxonase

                Comments

                Comment on this article