58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Architecture of Highly Complex Chemical Resistance Traits across Four Yeast Strains

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many questions about the genetic basis of complex traits remain unanswered. This is in part due to the low statistical power of traditional genetic mapping studies. We used a statistically powerful approach, extreme QTL mapping (X-QTL), to identify the genetic basis of resistance to 13 chemicals in all 6 pairwise crosses of four ecologically and genetically diverse yeast strains, and we detected a total of more than 800 loci. We found that the number of loci detected in each experiment was primarily a function of the trait (explaining 46% of the variance) rather than the cross (11%), suggesting that the level of genetic complexity is a consistent property of a trait across different genetic backgrounds. Further, we observed that most loci had trait-specific effects, although a small number of loci with effects in many conditions were identified. We used the patterns of resistance and susceptibility alleles in the four parent strains to make inferences about the allele frequency spectrum of functional variants. We also observed evidence of more complex allelic series at a number of loci, as well as strain-specific signatures of selection. These results improve our understanding of complex traits in yeast and have implications for study design in other organisms.

          Author Summary

          Most heritable traits of agricultural, evolutionary, and medical significance are specified by multiple genetic loci. Despite decades of research, we have only a limited understanding of the genetic basis of such complex traits. Studies in model organisms have the potential to provide fundamental insights into this research area, but most genetic mapping studies in these species have had low statistical power to detect multiple loci with small effects. Using a technique in which we employed millions of cross progeny in genetic mapping, we previously showed that resistance to chemicals has a highly complex genetic basis in a cross of a lab strain and a wine strain of the budding yeast Saccharomyces cerevisiae. Because we only examined a single cross, it was unclear how general our findings were. Here, we expand our work to all six possible crosses of four strains—the two isolates we used in our last study, as well as an isolate from an immunocompromised human being and an isolate from the sap of an oak tree. Our results based on these four ecologically and genetically distinct S. cerevisiae strains suggest that resistance to chemicals commonly exhibits a highly complex genetic basis among yeast isolates.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Book: not found

          Introduction to Quantitative Genetics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Population genomics of domestic and wild yeasts

            Since the completion of the genome sequence of Saccharomyces cerevisiae in 19961,2, there has been an exponential increase in complete genome sequences accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions3,4, population structure5-8, and sexual versus asexual reproduction9,10. Less well understood at the whole genome level are the evolutionary processes acting within populations and species leading to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to four-fold or more coverage of the genome sequences of over seventy isolates of the baker's yeast, S. cerevisiae, and its closest relative, S. paradoxus. We examine variation in gene content, SNPs, indels, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. Interestingly, S. paradoxus populations are well delineated along geographic boundaries while the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic dissection of transcriptional regulation in budding yeast.

              To begin to understand the genetic architecture of natural variation in gene expression, we carried out genetic linkage analysis of genomewide expression patterns in a cross between a laboratory strain and a wild strain of Saccharomyces cerevisiae. Over 1500 genes were differentially expressed between the parent strains. Expression levels of 570 genes were linked to one or more different loci, with most expression levels showing complex inheritance patterns. The loci detected by linkage fell largely into two categories: cis-acting modulators of single genes and trans-acting modulators of many genes. We found eight such trans-acting loci, each affecting the expression of a group of 7 to 94 genes of related function.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2012
                March 2012
                15 March 2012
                : 8
                : 3
                : e1002570
                Affiliations
                [1 ]Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
                [2 ]Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
                [3 ]Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, United States of America
                [4 ]Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
                [5 ]Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
                University of Wisconsin-Madison, United States of America
                Author notes

                Conceived and designed the experiments: IME LK. Performed the experiments: IME NT XW. Analyzed the data: IME JB. Wrote the paper: IME LK. Constructed strains: IME XW YJ. Designed microarrays: IME.

                Article
                PGENETICS-D-11-01575
                10.1371/journal.pgen.1002570
                3305394
                22438822
                cce0c502-b15a-4ff4-beba-7e50e0b550c4
                Ehrenreich et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 July 2011
                : 16 January 2012
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Genetics
                Genomics

                Genetics
                Genetics

                Comments

                Comment on this article