12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The taxonomic status of the endangered thin-spined porcupine, Chaetomys subspinosus (Olfers, 1818), based on molecular and karyologic data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The thin-spined porcupine, also known as the bristle-spined rat, Chaetomys subspinosus (Olfers, 1818), the only member of its genus, figures among Brazilian endangered species. In addition to being threatened, it is poorly known, and even its taxonomic status at the family level has long been controversial. The genus Chaetomys was originally regarded as a porcupine in the family Erethizontidae, but some authors classified it as a spiny-rat in the family Echimyidae. Although the dispute seems to be settled in favor of the erethizontid advocates, further discussion of its affinities should be based on a phylogenetic framework. In the present study, we used nucleotide-sequence data from the complete mitochondrial cytochrome b gene and karyotypic information to address this issue. Our molecular analyses included one individual of Chaetomys subspinosus from the state of Bahia in northeastern Brazil, and other hystricognaths.

          Results

          All topologies recovered in our molecular phylogenetic analyses strongly supported Chaetomys subspinosus as a sister clade of the erethizontids. Cytogenetically, Chaetomys subspinosus showed 2n = 52 and FN = 76. Although the sexual pair could not be identified, we assumed that the X chromosome is biarmed. The karyotype included 13 large to medium metacentric and submetacentric chromosome pairs, one small subtelocentric pair, and 12 small acrocentric pairs. The subtelocentric pair 14 had a terminal secondary constriction in the short arm, corresponding to the nucleolar organizer region (Ag-NOR), similar to the erethizontid Sphiggurus villosus, 2n = 42 and FN = 76, and different from the echimyids, in which the secondary constriction is interstitial.

          Conclusion

          Both molecular phylogenies and karyotypical evidence indicated that Chaetomys is closely related to the Erethizontidae rather than to the Echimyidae, although in a basal position relative to the rest of the Erethizontidae. The high levels of molecular and morphological divergence suggest that Chaetomys belongs to an early radiation of the Erethizontidae that may have occurred in the Early Miocene, and should be assigned to its own subfamily, the Chaetomyinae.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea.

          A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly. The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics

            Background Most analysis programs for inferring molecular phylogenies are difficult to use, in particular for researchers with little programming experience. Results TREEFINDER is an easy-to-use integrative platform-independent analysis environment for molecular phylogenetics. In this paper the main features of TREEFINDER (version of April 2004) are described. TREEFINDER is written in ANSI C and Java and implements powerful statistical approaches for inferring gene tree and related analyzes. In addition, it provides a user-friendly graphical interface and a phylogenetic programming language. Conclusions TREEFINDER is a versatile framework for analyzing phylogenetic data across different platforms that is suited both for exploratory as well as advanced studies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy

                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2009
                3 February 2009
                : 9
                : 29
                Affiliations
                [1 ]Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, São Paulo, SP, Brazil
                [2 ]Laboratório Especial de Ecologia e Evolução, Instituto Butantan Avenida Dr Vital Brazil, 1500, São Paulo, SP, Brazil
                [3 ]Departamento de Ciências Biológicas, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Avenida Marechal Campos, 1468, Maruípe, Vitória, ES, Brazil
                Article
                1471-2148-9-29
                10.1186/1471-2148-9-29
                2646700
                19192302
                cce4b600-fc08-41dc-8759-ca98fd2546e2
                Copyright © 2009 Vilela et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 April 2008
                : 3 February 2009
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article