3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Cocoa to Chocolate: Effect of Processing on Flavanols and Methylxanthines and Their Mechanisms of Action

      , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the health benefits associated with the ingestion of the bioactive compounds in cocoa, the high concentrations of polyphenols and methylxanthines in the raw cocoa beans negatively influence the taste, confer the astringency and bitterness, and affect the stability and digestibility of the cocoa products. It is, therefore, necessary to process cocoa beans to develop the characteristic color, taste, and flavor, and reduce the astringency and bitterness, which are desirable in cocoa products. Processing, however, affects the composition and quantities of the bioactive compounds, resulting in the modification of the health-promoting properties of cocoa beans and chocolate. In this advanced review, we sought to better understand the effect of cocoa’s transformational process into chocolate on polyphenols and methylxanthine and the mechanism of action of the original flavanols and methylxanthines. More data on the cocoa processing effect on cocoa bioactives are still needed for better understanding the effect of each processing step on the final polyphenolic and methylxanthine composition of chocolate and other cocoa products. Regarding the mechanisms of action, theobromine acts through the modulation of the fatty acid metabolism, mitochondrial function, and energy metabolism pathways, while flavanols mainly act though the protein kinases and antioxidant pathways. Both flavanols and theobromine seem to be involved in the nitric oxide and neurotrophin regulation.

          Related collections

          Most cited references217

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials.

          The beneficial effects of flavonoid consumption on cardiovascular risk are supported by mechanistic and epidemiologic evidence. We aimed to systematically review the effectiveness of different flavonoid subclasses and flavonoid-rich food sources on cardiovascular disease (CVD) and risk factors--ie, lipoproteins, blood pressure, and flow-mediated dilatation (FMD). Methods included a structured search strategy on MEDLINE, EMBASE, and Cochrane databases; formal inclusion or exclusion, data extraction, and validity assessment; and meta-analysis. One hundred thirty-three trials were included. No randomized controlled trial studied effects on CVD morbidity or mortality. Significant heterogeneity confirmed differential effects between flavonoid subclasses and foods. Chocolate increased FMD after acute (3.99%; 95% CI: 2.86, 5.12; 6 studies) and chronic (1.45%; 0.62, 2.28; 2 studies) intake and reduced systolic (-5.88 mm Hg; -9.55, -2.21; 5 studies) and diastolic (-3.30 mm Hg; -5.77, -0.83; 4 studies) blood pressure. Soy protein isolate (but not other soy products or components) significantly reduced diastolic blood pressure (-1.99 mm Hg; -2.86, -1.12; 9 studies) and LDL cholesterol (-0.19 mmol/L; -0.24, -0.14; 39 studies). Acute black tea consumption increased systolic (5.69 mm Hg; 1.52, 9.86; 4 studies) and diastolic (2.56 mm Hg; 1.03, 4.10; 4 studies) blood pressure. Green tea reduced LDL (-0.23 mmol/L; -0.34, -0.12; 4 studies). For many of the other flavonoids, there was insufficient evidence to draw conclusions about efficacy. To date, the effects of flavonoids from soy and cocoa have been the main focus of attention. Future studies should focus on other commonly consumed subclasses (eg, anthocyanins and flavanones), examine dose-response effects, and be of long enough duration to allow assessment of clinically relevant endpoints.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans.

            Epidemiological and medical anthropological investigations suggest that flavanol-rich foods exert cardiovascular health benefits. Endothelial dysfunction, a prognostically relevant key event in atherosclerosis, is characterized by a decreased bioactivity of nitric oxide (NO) and impaired flow-mediated vasodilation (FMD). We show in healthy male adults that the ingestion of flavanol-rich cocoa was associated with acute elevations in levels of circulating NO species, an enhanced FMD response of conduit arteries, and an augmented microcirculation. In addition, the concentrations and the chemical profiles of circulating flavanol metabolites were determined, and multivariate regression analyses identified (-)-epicatechin and its metabolite, epicatechin-7-O-glucuronide, as independent predictors of the vascular effects after flavanol-rich cocoa ingestion. A mixture of flavanols/metabolites, resembling the profile and concentration of circulating flavanol compounds in plasma after cocoa ingestion, induced a relaxation in preconstricted rabbit aortic rings ex vivo, thus mimicking acetylcholine-induced relaxations. Ex vivo flavanol-induced relaxation, as well as the in vivo increases in FMD, were abolished by inhibition of NO synthase. Oral administration of chemically pure (-)-epicatechin to humans closely emulated acute vascular effects of flavanol-rich cocoa. Finally, the concept that a chronic intake of high-flavanol diets is associated with prolonged, augmented NO synthesis is supported by data that indicate a correlation between the chronic consumption of a cocoa flavanol-rich diet and the augmented urinary excretion of NO metabolites. Collectively, our data demonstrate that the human ingestion of the flavanol (-)-epicatechin is, at least in part, causally linked to the reported vascular effects observed after the consumption of flavanol-rich cocoa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Translational control by MAPK signaling in long-term synaptic plasticity and memory.

              Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                November 2022
                November 18 2022
                : 23
                : 22
                : 14365
                Article
                10.3390/ijms232214365
                36430843
                cd00cb11-beed-4368-a758-319836651364
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article