4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Surface Treatment and Cementation of Lithium Silicate Ceramics Containing ZrO2

      , , , , ,
      Operative Dentistry
      Operative Dentistry

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Objective

          To evaluate the effect of different surface treatments on the shear bond strength (SBS) of lithium silicate (LS) and lithium disilicate (LD) ceramics, after thermocycling.

          Methods and Materials

          For SBS test, 72 ceramic blocks (18×14×2 mm) were made (24 blocks from each ceramic material): VITA Suprinity (LSS), Celtra Duo (LSC), and Lithium disilicate (LD). The blocks were polished with sandpaper of increasing grit (#280, #400, #800, and #1200) and embedded in chemically activated acrylic resin. Afterwards, they were randomly divided into 12 groups (6 blocks per group) according to: “Ceramic” (LD, LSC, and LSS) and “Surface treatment” (HFS: hydrofluoric acid + silane; MEP: Monobond Etch & Prime/Ivoclar). From each treated surface ceramic block, four dual-curing resin cement cylinders (RelyX U200, 3M Oral Care) were prepared using a Tygon tube (Ø=3 mm and h=2 mm) and light cured for 40 seconds (1000 mW/cm2) (N=288/n=24). All specimens were submitted to thermocycling (10,000 cycles, 5°C and 55°C, 30 seconds) and then to SBS test at a crosshead speed of 1 mm/min using a 50-kgf load cell. Forty-five additional blocks were made for roughness and SEM analysis. Failure mode was also performed. The data (MPa) were statistically analyzed by oneway analysis of variance (ANOVA), Tukey test (5%), and Weibull analysis. The Ra was analyzed by Kruskal–Wallis and Dunn Test (5%). The other variables were analyzed qualitatively.

          Results

          ANOVA revealed that “surface treatment” was significant for all ceramic materials (p<0.05). The LD-HFS (18.66±3.49), LSC-HFS (16.81±2.62), and LSS-HFS (16.33±3.08) groups had significantly higher SBS than the LD-MEP (7.00±4.2), LSCMEP (14.12±3.51), and LSS-MEP (13.87±2.52) groups. Complete adhesive failures at the cement–dentin interface were more frequent. Weibull modulus was superior for the LD-HFS (6.22), LSC-HFS (8.8), and LSS-HFS (7.4) groups.

          Conclusion

          HF followed by silanization is the most suitable surface treatment for the cementation of LS and LD glass ceramics.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          A critical review of the durability of adhesion to tooth tissue: methods and results.

          The immediate bonding effectiveness of contemporary adhesives is quite favorable, regardless of the approach used. In the long term, the bonding effectiveness of some adhesives drops dramatically, whereas the bond strengths of other adhesives are more stable. This review examines the fundamental processes that cause the adhesion of biomaterials to enamel and dentin to degrade with time. Non-carious class V clinical trials remain the ultimate test method for the assessment of bonding effectiveness, but in addition to being high-cost, they are time- and labor-consuming, and they provide little information on the true cause of clinical failure. Therefore, several laboratory protocols were developed to predict bond durability. This paper critically appraises methodologies that focus on chemical degradation patterns of hydrolysis and elution of interface components, as well as mechanically oriented test set-ups, such as fatigue and fracture toughness measurements. A correlation of in vitro and in vivo data revealed that, currently, the most validated method to assess adhesion durability involves aging of micro-specimens of biomaterials bonded to either enamel or dentin. After about 3 months, all classes of adhesives exhibited mechanical and morphological evidence of degradation that resembles in vivo aging effects. A comparison of contemporary adhesives revealed that the three-step etch-and-rinse adhesives remain the 'gold standard' in terms of durability. Any kind of simplification in the clinical application procedure results in loss of bonding effectiveness. Only the two-step self-etch adhesives approach the gold standard and do have some additional clinical benefits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thermal cycling procedures for laboratory testing of dental restorations.

            Exposure of restorations in extracted teeth to cyclic thermal fluctuations to simulate one of the many factors in the oral environment has been common in many tracer penetration, marginal gap and bond strength laboratory tests. Temperature changes used have rarely been substantiated with temperature measurements made in vivo and vary considerably between reports. Justification and standardization of regimen are required. An assessment of reports describing temperature changes of teeth in vivo is followed by an analysis of 130 studies of laboratory thermal cycling of teeth by 99 first authors selected from 25 journals. A clinically relevant thermal cycling regimen was derived from the in vivo information, and is suggested as a benchmark standard. Variation of regimens used was large, making comparison of reports difficult. Reports of testing the effects of thermal cycling were often contradictory, but generally leakage increased with thermal stress, although it has never been demonstrated that cyclic testing is relevant to clinical failures. However, should this be done, the standard cyclic regimen defined is: 35 degrees C (28 s), 15 degrees C (2 s), 35 degrees C (28 s), 45 degrees C (2 s). No evidence of the number of cycles likely to be experienced in vivo was found and this requires investigation, but a provisional estimate of approximately 10,000 cycles per year is suggested. Thermal stressing of restoration interfaces is only of value when the initial bond is already known to be reliable. This is not the case for most current restorative materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resin-ceramic bonding: a review of the literature.

              Current ceramic materials offer preferred optical properties for highly esthetic restorations. The inherent brittleness of some ceramic materials, specific treatment modalities, and certain clinical situations require resin bonding of the completed ceramic restoration to the supporting tooth structures for long-term clinical success. This article presents a literature review on the resin bond to dental ceramics. A PubMed database search was conducted for in vitro studies pertaining to the resin bond to ceramic materials. The search was limited to peer-reviewed articles published in English between 1966 and 2001. Although the resin bond to silica-based ceramics is well researched and documented, few in vitro studies on the resin bond to high-strength ceramic materials were identified. Available data suggest that resin bonding to these materials is less predictable and requires substantially different bonding methods than to silica-based ceramics. Further in vitro studies, as well as controlled clinical trials, are needed.
                Bookmark

                Author and article information

                Journal
                Operative Dentistry
                Operative Dentistry
                1559-2863
                0361-7734
                March 01 2022
                April 11 2022
                March 01 2022
                April 11 2022
                : 47
                : 2
                : 202-213
                Article
                10.2341/20-156-L
                cd0d78ee-6f9e-49a4-b230-2718fc918cb0
                © 2022
                History

                Comments

                Comment on this article