20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Moderate Physical Activity as a Prevention Method for Knee Osteoarthritis and the Role of Synoviocytes as Biological Key

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to investigate the influence of moderate physical activity (MPA) on the expression of osteoarthritis (OA)-related (IL-1β, IL-6, TNF-α, MMP-13) and anti-inflammatory and chondroprotective (IL-4, IL-10, lubricin) biomarkers in the synovium of an OA-induced rat model. A total of 32 rats were divided into four groups: Control rats (Group 1); rats performing MPA (Group 2); anterior cruciate ligament transection (ACLT)-rats with OA (Group 3); and, ACLT-rats performing MPA (Group 4). Analyses were performed using Hematoxylin & Eosin (H&E) staining, histomorphometry and immunohistochemistry. In Group 3, OA biomarkers were significantly increased, whereas, IL-4, IL-10, and lubricin were significantly lower than in the other experimental groups. We hypothesize that MPA might partake in rescuing type B synoviocyte dysfunction at the early stages of OA, delaying the progression of the disease.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The role of cytokines in osteoarthritis pathophysiology.

          Morphological changes observed in OA include cartilage erosion as well as a variable degree of synovial inflammation. Current research attributes these changes to a complex network of biochemical factors, including proteolytic enzymes, that lead to a breakdown of the cartilage macromolecules. Cytokines such as IL-1 and TNF-alpha produced by activated synoviocytes, mononuclear cells or by articular cartilage itself significantly up-regulate metalloproteinases (MMP) gene expression. Cytokines also blunt chondrocyte compensatory synthesis pathways required to restore the integrity of the degraded extrecellular matrix (ECM). Moreover, in OA synovium, a relative deficit in the production of natural antagonists of the IL-1 receptor (IL-1Ra) has been demonstrated, and could possibly be related to an excess production of nitric oxide in OA tissues. This, coupled with an upregulation in the receptor level, has been shown to be an additional enhancer of the catabolic effect of IL-1 in this disease.IL-1 and TNF-alpha significantly up-regulate MMP-3 steady-state mRNA derived from human synovium and chondrocytes. The neutralization of IL-1 and/or TNF-alpha up-regulation of MMP gene expression appears to be a logical development in the potential medical therapy of OA. Indeed, recombinant IL-1receptor antagonists (ILRa) and soluble IL-1 receptor proteins have been tested in both animal models of OA for modification of OA progression. Soluble IL-1Ra suppressed MMP-3 transcription in the rabbit synovial cell line HIG-82. Experimental evidence showing that neutralizing TNF-alpha suppressed cartilage degradation in arthritis also support such strategy. The important role of TNF-alpha in OA may emerge from the fact that human articular chondrocytes from OA cartilage expressed a significantly higher number of the p55 TNF-alpha receptor which could make OA cartilage particularly susceptible to TNF-alpha degradative stimuli. In addition, OA cartilage produces more TNF-alpha and TNF anglealpha convertase enzyme (TACE) mRNA than normal cartilage. By analogy, an inhibitor to the p55 TNF-alpha receptor may also provide a mechanism for abolishing TNF-alpha-induced degradation of cartilage ECM by MMPs. Since TACE is the regulator of TNF-alpha activity, limiting the activity of TACE might also prove efficacious in OA. IL-1 and TNF-alpha inhibition of chondrocyte compensatory biosynthesis pathways which further compromise cartilage repair must also be dealt with, perhaps by employing stimulatory agents such as transforming growth factor-beta or insulin-like growth factor-I. Certain cytokines have antiinflammatory properties. Three such cytokines - IL-4, IL-10, and IL-13 - have been identified as able to modulate various inflammatory processes. Their antiinflammatory potential, however, appears to depend greatly on the target cell. Interleukin-4 (IL-4) has been tested in vitro in OA tissue and has been shown to suppress the synthesis of both TNF-alpha and IL-1beta in the same manner as low-dose dexamethasone. Naturally occurring antiinflammatory cytokines such as IL-10 inhibit the synthesis of IL-1 and TNF-alpha and can be potential targets for therapy in OA. Augmenting inhibitor production in situ by gene therapy or supplementing it by injecting the recombinant protein is an attractive therapeutic target, although an in vivo assay in OA is not available, and its applicability has yet to be proven. Similarly, IL-13 significantly inhibits lipopolysaccharide (LPS)-induced TNF-alpha production by mononuclear cells from peripheral blood, but not in cells from inflamed synovial fluid. IL-13 has important biological activities: inhibition of the production of a wide range of proinflammatory cytokines in monocytes/macrophages, B cells, natural killer cells and endothelial cells, while increasing IL-1Ra production. In OA synovial membranes treated with LPS, IL-13 inhibited the synthesis of IL-1beta, TNF-alpha and stromelysin, while increasing IL-1Ra production.In summary, modulation of cytokines that control MMP gene up-regulation would appear to be fertile targets for drug development in the treatment of OA. Several studies illustrate the potential importance of modulating IL-1 activity as a means to reduce the progression of the structural changes in OA. In the experimental dog and rabbit models of OA, we have demonstrated that in vivo intraarticular injections of the IL-Ra gene can prevent the progression of structural changes in OA. Future directions in the research and treatment of osteoarthritis (OA) will be based on the emerging picture of pathophysiological events that modulate the initiation and progression of OA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the rat.

            During the development of disease-modifying osteoarthritis (OA) drugs, rat models of OA are frequently used for a first assessment of in vivo efficacy. The most efficacious compound in the rat model may then be tested in a larger animal model before entering human trials. The aim of this study was to describe a histologic scoring system for use in different models of OA in rats that allows standardization and comparison of results obtained by different investigators. The experience of the authors with current scoring systems and the range of lesions observed in rat and human OA studies were considered in recommending this common paradigm for rat histologic scoring. Considerations were made for reproducibility and ease of use for new scorers. Additional scoring paradigms may be employed to further identify specific effects of some disease-modifying drugs. Although the described scoring system is more complex than the modified Mankin scores, which are recommended for some other species, the reliability study showed that it is easily understood and can be reproducibly used, even by inexperienced scorers. The scoring paradigm described here has been found to be sufficiently sensitive to discriminate between treatments and to have high reproducibility. Therefore we recommend its use for evaluation of different rat OA models as well as assessment of disease-modifying effects of treatments in these models. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Developments in the scientific understanding of osteoarthritis

              Osteoarthritis is often a progressive and disabling disease, which occurs in the setting of a variety of risk factors – such as advancing age, obesity, and trauma – that conspire to incite a cascade of pathophysiologic events within joint tissues. An important emerging theme in osteoarthritis is a broadening of focus from a disease of cartilage to one of the 'whole joint'. The synovium, bone, and cartilage are each involved in pathologic processes that lead to progressive joint degeneration. Additional themes that have emerged over the past decade are novel mechanisms of cartilage degradation and repair, the relationship between biomechanics and biochemical pathways, the importance of inflammation, and the role played by genetics. In this review we summarize current scientific understanding of osteoarthritis and examine the pathobiologic mechanisms that contribute to progressive disease.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                25 January 2019
                February 2019
                : 20
                : 3
                : 511
                Affiliations
                [1 ]Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia n°87, 95124 Catania, Italy; pacastro@ 123456unict.it (P.C.); mdirosa@ 123456unict.it (M.D.R.); silviaravalli@ 123456gmail.com (S.R.); claudiaguglielmino11@ 123456gmail.com (C.G.); roimbesi@ 123456unict.it (R.I.); marta.sz@ 123456hotmail.it (M.A.S.)
                [2 ]School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia; Alessandro.Castorina@ 123456uts.edu.au
                [3 ]Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
                [4 ]Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, via S. Sofia 67, 95123 Catania, Italy; michele_vecchio@ 123456yahoo.com (M.V.); fdrago@ 123456unict.it (F.D.)
                [5 ]School of the Sport of the Italian National Olympic Committee “CONI” Sicily, Via Emanuele Notarbartolo, 90141 Palermo, Italy
                Author notes
                [* ]Correspondence: g.musumeci@ 123456unict.it ; Tel.: +39-0953782043
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-5873-2456
                https://orcid.org/0000-0002-1837-9325
                https://orcid.org/0000-0001-7037-759X
                https://orcid.org/0000-0003-4228-4163
                https://orcid.org/0000-0001-5281-1516
                https://orcid.org/0000-0002-8260-8890
                Article
                ijms-20-00511
                10.3390/ijms20030511
                6387266
                30691048
                cd1238b3-8008-41e7-a6b4-41db06d48bdc
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 December 2018
                : 23 January 2019
                Categories
                Article

                Molecular biology
                osteoarthritis,synovium,physical activity,interleukins,lubricin
                Molecular biology
                osteoarthritis, synovium, physical activity, interleukins, lubricin

                Comments

                Comment on this article