58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nano-sized extracelullar vesicles (EVs) released by various cell types play important roles in a plethora of (patho)physiological processes and are increasingly recognized as biomarkers for disease. In addition, engineered EV and EV-inspired liposomes hold great potential as drug delivery systems. Major technologies developed for high-throughput analysis of individual EV include nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (tRPS) and high-resolution flow cytometry (hFC). Currently, there is a need for comparative studies on the available technologies to improve standardization of vesicle analysis in diagnostic or therapeutic settings.

          We investigated the possibilities, limitations and comparability of NTA, tRPS and hFC for analysis of tumor cell-derived EVs and synthetic mimics (i.e. differently sized liposomes). NTA and tRPS instrument settings were identified that significantly affected the quantification of these particles. Furthermore, we detailed the differences in absolute quantification of EVs and liposomes using the three technologies. This study increases our understanding of possibilities and pitfalls of NTA, tRPS and hFC, which will benefit standardized and large-scale clinical application of (engineered) EVs and EV-mimics in the future.

          Graphical abstract

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Biogenesis and secretion of exosomes.

          Although observed for several decades, the release of membrane-enclosed vesicles by cells into their surrounding environment has been the subject of increasing interest in the past few years, which led to the creation, in 2012, of a scientific society dedicated to the subject: the International Society for Extracellular Vesicles. Convincing evidence that vesicles allow exchange of complex information fuelled this rise in interest. But it has also become clear that different types of secreted vesicles co-exist, with different intracellular origins and modes of formation, and thus probably different compositions and functions. Exosomes are one sub-type of secreted vesicles. They form inside eukaryotic cells in multivesicular compartments, and are secreted when these compartments fuse with the plasma membrane. Interestingly, different families of molecules have been shown to allow intracellular formation of exosomes and their subsequent secretion, which suggests that even among exosomes different sub-types exist. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosome secretion: molecular mechanisms and roles in immune responses.

            Exosomes are small membrane vesicles, secreted by most cell types from multivesicular endosomes, and thought to play important roles in intercellular communications. Initially described in 1983, as specifically secreted by reticulocytes, exosomes became of interest for immunologists in 1996, when they were proposed to play a role in antigen presentation. More recently, the finding that exosomes carry genetic materials, mRNA and miRNA, has been a major breakthrough in the field, unveiling their capacity to vehicle genetic messages. It is now clear that not only immune cells but probably all cell types are able to secrete exosomes: their range of possible functions expands well beyond immunology to neurobiology, stem cell and tumor biology, and their use in clinical applications as biomarkers or as therapeutic tools is an extensive area of research. Despite intensive efforts to understand their functions, two issues remain to be solved in the future: (i) what are the physiological function(s) of exosomes in vivo and (ii) what are the relative contributions of exosomes and of other secreted membrane vesicles in these proposed functions? Here, we will focus on the current ideas on exosomes and immune responses, but also on their mechanisms of secretion and the use of this knowledge to elucidate the latter issue. © 2011 John Wiley & Sons A/S.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis.

              Exosomes are naturally occurring biological nanovesicles utilized by tumors to communicate signals to local and remote cells and tissues. Melanoma exosomes can incite a proangiogenic signaling program capable of remodeling tissue matrices. In this study, we show exosome-mediated conditioning of lymph nodes and define microanatomic responses that license metastasis of melanoma cells. Homing of melanoma exosomes to sentinel lymph nodes imposes synchronized molecular signals that effect melanoma cell recruitment, extracellular matrix deposition, and vascular proliferation in the lymph nodes. Our findings highlight the pathophysiologic role and mechanisms of an exosome-mediated process of microanatomic niche preparation that facilitates lymphatic metastasis by cancer cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Control Release
                J Control Release
                Journal of Controlled Release
                Elsevier Science Publishers
                0168-3659
                1873-4995
                28 February 2015
                28 February 2015
                : 200
                : 87-96
                Affiliations
                [a ]Department of Neurosurgery, University Medical Center Utrecht, The Netherlands
                [b ]Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
                [c ]Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
                [d ]Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
                [e ]Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, The Netherlands
                Author notes
                [* ]Corresponding author at: Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands. e.n.m.nolte@ 123456uu.nl
                Article
                S0168-3659(14)00838-4
                10.1016/j.jconrel.2014.12.041
                4324667
                25555362
                cd3027e5-71f4-4bae-a8fd-3fb3bb2b6a2a
                © 2015 The Authors. Published by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 October 2014
                : 29 December 2014
                Categories
                Article

                Animal science & Zoology
                extracellular vesicles,exosomes,liposomes,nanoparticle tracking analysis,tunable resistive pulse sensing,high-resolution flow cytometry

                Comments

                Comment on this article