Blog
About

16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anderson Metal-Insulator Transitions With Classical Magnetic Impurities

      Preprint

      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study effects of classical magnetic impurities on the Anderson metal-insulator transition numerically. We find that a small concentration of Heisenberg impurities enhances the critical disorder amplitude \(W_{\rm c}\) with increasing exchange coupling strength \(J\). The resulting scaling with \(J\) is analyzed which supports an anomalous scaling prediction by Wegner due to the combined breaking of time-reversal and spin-rotational symmetry. Moreover, we find that the presence of magnetic impurities lowers the critical correlation length exponent \(\nu\) and enhances the multifractality parameter \(\alpha_0\). The new value of \(\nu\) improves the agreement with the value measured in experiments on the metal-insulator transition (MIT) in doped semiconductors like phosphor-doped silicon, where a finite density of magnetic moments is known to exist in the vicinity of the MIT. The results are obtained by a finite-size scaling analysis of the geometric mean of the local density of states which is calculated by means of the kernel polynomial method. We establish this combination of numerical techniques as a method to obtain critical properties of disordered systems quantitatively.

          Related collections

          Author and article information

          Journal
          2015-07-13
          2016-02-25
          Article
          10.1103/PhysRevB.93.134203
          1507.03374

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          Phys. Rev. B 93, 134203 (2016)
          5 pages, 2 figures, 2 tables, submitted to PRB
          cond-mat.dis-nn

          Theoretical physics

          Comments

          Comment on this article