7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards the Genomic Basis of Local Adaptation in Landraces

      Giandomenico Corrado, Rosa Rao
      Diversity
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          The microbial pan-genome.

          A decade after the beginning of the genomic era, the question of how genomics can describe a bacterial species has not been fully addressed. Experimental data have shown that in some species new genes are discovered even after sequencing the genomes of several strains. Mathematical modeling predicts that new genes will be discovered even after sequencing hundreds of genomes per species. Therefore, a bacterial species can be described by its pan-genome, which is composed of a "core genome" containing genes present in all strains, and a "dispensable genome" containing genes present in two or more strains and genes unique to single strains. Given that the number of unique genes is vast, the pan-genome of a bacterial species might be orders of magnitude larger than any single genome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Climate change, adaptation, and phenotypic plasticity: the problem and the evidence

            Many studies have recorded phenotypic changes in natural populations and attributed them to climate change. However, controversy and uncertainty has arisen around three levels of inference in such studies. First, it has proven difficult to conclusively distinguish whether phenotypic changes are genetically based or the result of phenotypic plasticity. Second, whether or not the change is adaptive is usually assumed rather than tested. Third, inferences that climate change is the specific causal agent have rarely involved the testing – and exclusion – of other potential drivers. We here review the various ways in which the above inferences have been attempted, and evaluate the strength of support that each approach can provide. This methodological assessment sets the stage for 11 accompanying review articles that attempt comprehensive syntheses of what is currently known – and not known – about responses to climate change in a variety of taxa and in theory. Summarizing and relying on the results of these reviews, we arrive at the conclusion that evidence for genetic adaptation to climate change has been found in some systems, but is still relatively scarce. Most importantly, it is clear that more studies are needed – and these must employ better inferential methods – before general conclusions can be drawn. Overall, we hope that the present paper and special issue provide inspiration for future research and guidelines on best practices for its execution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A quantitative survey of local adaptation and fitness trade-offs.

              The long history of reciprocal transplant studies testing the hypothesis of local adaptation has shown that populations are often adapted to their local environments. Yet many studies have not demonstrated local adaptation, suggesting that sometimes native populations are no better adapted than are genotypes from foreign environments. Local adaptation may also lead to trade-offs, in which adaptation to one environment comes at a cost of adaptation to another environment. I conducted a survey of published studies of local adaptation to quantify its frequency and magnitude and the costs associated with local adaptation. I also quantified the relationship between local adaptation and environmental differences and the relationship between local adaptation and phenotypic divergence. The overall frequency of local adaptation was 0.71, and the magnitude of the native population advantage in relative fitness was 45%. Divergence between home site environments was positively associated with the magnitude of local adaptation, but phenotypic divergence was not. I found a small negative correlation between a population's relative fitness in its native environment and its fitness in a foreign environment, indicating weak trade-offs associated with local adaptation. These results suggest that populations are often locally adapted but stochastic processes such as genetic drift may limit the efficacy of divergent selection.
                Bookmark

                Author and article information

                Journal
                DIVEC6
                Diversity
                Diversity
                MDPI AG
                1424-2818
                December 2017
                November 04 2017
                : 9
                : 4
                : 51
                Article
                10.3390/d9040051
                cd39f4c4-599a-48bb-aece-0eb278a55a6b
                © 2017

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article